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Abstract 

This paper addresses the problem of supervised learning in 

intelligent environments. An intelligent environment perceives 

user activity and offers a number of services according to the 

perceived information about the user. An abstract context 

model in the form of a situation network is used to represent 

the intelligent environment, its occupants and their activities. 

The context model consists of situations, roles played by 

entities and relations between these entities. The objective is 

to adapt the system services, which are associated to the 

situations of the model, to the changing needs of the user. For 

this, a supervisor gives feedback by correcting system services 

that are found to be inappropriate to user needs. The situation 

network can be developed by exchanging the system service-

situation association, by splitting the situation, or by learning 

new roles. The situation split is interpreted as a replacement of 

the former situation by sub-situations whose number and 

characteristics are determined using conceptual or decision 

tree algorithms. Different algorithms have been tested on a 

context model within the SmartOffice environment of the 

PRIMA research group. The decision tree algorithm (ID3) has 

been found to give the best results. 

 

1. Introduction 

An environment is called “perceptive” if it is capable of 

maintaining a model of its occupants and their activities. An 

environment becomes “active” when it is capable of 

(re)actions (system services). An “interactive” environment is 

based on the capacity of perception, (re)action and 

communication with the users. “Intelligent” environments 

should provide services while minimizing disruptions, such as 

explicit man-machine communication. This requires that the 

intelligent environment perceives user activities and identifies 

user needs correctly in order to react in an appropriate way. 

However, user needs and system services evolve in the course 

of time. Further, different users may have different needs for 

the same activities. Thus an intelligent environment must be 

capable of adapting and developing its services automatically 

to meet the specific needs of a user. 

In this paper, we describe a method for evolving and 

developing the abstract context model for an intelligent 

environment. Our abstract context model is based on a 

situation network. The situations of this network are altered 

and split in order to meet changing user needs. These 

evolutions of the model are intended to maximize the 

correctness of the executed system services concerning the 

user needs perceived by a supervisor. 

2. Problem Statement 

The problem addressed in this paper is machine learning in an 

intelligent environment. The intelligent environment is a 

computer system that executes a number of services 

according to perceptual information on user actions or 

activity. As we know, user behavior changes in the course of 

time. The automatic adaptation of system (re)actions 

according to changing user needs is seen as machine learning 

process. We need information in the form of feedback on 

executed system services in order to guide the learning 

process. Further, we can define several qualities that this 

machine learning process should have: 

 

• Understandable Representation and Reasoning: We 

consider that a user is only willing to accept an intelligent 

environment offering services implicitly if he understands 

and foresees its decisions. Thus we want the user to be able 

to understand the system perceptions and their 

representation in the model of the interactive environment. 

Further, the learning process, i.e. the reasoning and the 

development of the model necessary to cover changing 

user needs, should also be understandable for the user. 

• Supervisor corrections (feedback): We want to minimize 

the frequency with which the system offers inappropriate 

services, while minimizing disruption. This means that the 

feedback given to the system is to be minimal to achieve 

the wanted changes of system services. We assume that a 

person, denoted supervisor in the following, is capable of 

specifying system services to be executed by the system 

and that his feedback is always consistent. The user himself 

or another person can act as this supervisor. In this paper, 

we distinguish three forms of supervisor feedback:   

• (Re)action correction: the service or (re)action 

executed by the system is wrong and a different 

service must be executed instead. The supervisor 

gives the different system (re)action as feedback to the 

system. This includes the case where the supervisor 

wants the system to execute a (re)action while the 

system does not execute anything. 

• (Re)action deletion: the service executed by the 

system is wrong and no system service must be 

executed instead. The supervisor gives a particular 

(re)action, the “erase” (re)action, as feedback to the 

system. 

• (Re)action preservation: the service executed by the 

system is correct. The supervisor does not give any 

information to the system. As we assume that the 

supervisor is always consistent, we can interpret the 
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absence of his corrections or deletions as positive 

feedback for the currently executed system 

(re)actions. 

The supervisor will not give any further feedback on the 

model representing the intelligent environment. The learning 

process must integrate the information given on the system 

(re)actions by evolving and developing the model. 

3. Previous Approaches and Related Work 

An early example of an interactive environment is the 

KidsRoom [1], a perceptually-based, interactive, narrative 

playspace for children. The KidsRoom environment interacts 

with the children in order to narrate a story. It does not have, 

however, any learning capacity concerning the automatic 

development of its (re)actions. The perception modules and 

the (re)actions in the environment are integrated in a 

preprogrammed story context and need to be adapted by hand 

(in general by a programmer). 

The ContAct project [2] realized a system deriving user 

activity and availability from sensor data in an office 

environment. The system uses a naive Bayesian Classifier to 

learn user activity and availability directly from sensor data 

according to given user feedback. This system is, however, 

only perceptive and not (inter)active as there are no 

(re)actions defined or planned by the system. Further, no 

understandable representation of the environment is provided. 

The Lumiere project [3] at Microsoft Research realized 

methods and an architecture for reasoning about the goals and 

needs of software users as they work with software. The 

objective is to learn appropriate interactions with the user 

according to perceived user activities in order to offer 

assistance within a software environment. At the heart of 

Lumiere are Bayesian models, which are based on a large 

amount of example data from users and experts.  Although 

these models could identify a number of (understandable) 

pertinent variables of human behavior (like task history or 

assistance history), their reasoning is not obvious to the user. 

In this paper, we want to focus on an understandable 

model of the environment whose initial construction can be 

done by hand (without large amounts of example data). The 

context model [4] is a non-Bayesian model inspired by 

concepts of planning and knowledge representation used in 

robotics and artificial intelligence. The central concept of this 

model is the notion of situation. A situation refers to a 

particular state of the environment. It is composed of a 

particular configuration of entities, roles and relations (see 

Fig. 1 for an example). 

An entity may generally be understood as corresponding 

to a physical object or person. It is created accompanied by a 

set of numerical or symbolic properties. We say that an entity 

is observed to play a role if it passes a role acceptance test on 

its properties. This role acceptance test may be seen as a 

predicate function defined over entities and their properties. A 

person may, for example, play the role lecturer if he or she 

stands next to the presentation screen, which is tested by 

comparing the person's position to predefined values 

(acceptance test). 

 

  

Figure 1: Example of a context model for a lecture 

room. Sit 0, Sit 1 and Sit 2 are the available situations. 

Lecturer, Audience are the available roles and SameAs 

the available relation. SwitchOnLight, 

SwitchOnProjector are system (re)actions. E1 and E2 

are entities. 

A relation is defined as a predicate function on several 

entities playing roles. The identity relation may, for example, 

be created by comparing the names of two entities playing 

different roles. A context is determined by the available roles 

and relations. A situation stands for a particular assignment of 

entities to roles completed by a set of relations between these 

entities. Thus a change in the relations between entities or in 

the assignment of entities to roles results in a change of 

situation. This (possible) change of situation is represented by 

an arc connecting these situations. The context can then be 

represented by a network of situations. System (re)actions 

(system services) are directly associated to the situations in 

the network. 

4. Method 

The understandable form of the context model allows an easy 

predefinition of situations and associated system (re)actions 

by a supervisor. The learning process must adapt the 

predefined context model according to the given supervisor 

feedback on the system (re)actions. As the different layers of 

a context model (entities - roles, relations - situations) 

influence each other, the learning process cannot adapt them 

simultaneously. Thus we will focus on the development of the 

situation network and the associated system (re)actions. 

Bayesian models (in particular Hidden Markov Models 

[5]) as well as algorithms based on first-order logic like [6] 

have been considered to represent and adapt the situation 

network. However, these approaches do not have good 

properties concerning the extension of the number of 

situations, which is essential for developing a situation 

network. Bayesian models require a large amount of example 

data to extend the number of states. First-order logic 

algorithms cannot create new predicates (problem of higher 

order logic), which corresponds to the extension of the 

number of situations. Thus the method proposed in this paper 

is based on algorithmic changes of the structure of the 

situation network. 

4.1. Algorithm 

Fig. 2 shows an overview of the proposed algorithm. The 

input of the algorithm is a predefined situation network 

(context model) and feedback given by a supervisor. The 

supervisor corrects, deletes or preserves the (re)actions 

Audience(E1) 

Lecturer(E1) 

Audience(E2) 

¬SameAs(E1, E2) 

Sit 0 =>  

Sit 1 => SwitchOnLight 

Sit 2  => SwitchOnProjector 

 

Context: Lecture Room 

Sit 1 

Sit 0 Sit 2 
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executed by the system while observing a user in the 

environment. Each correction, deletion, or preservation 

generates a training example for the learning algorithm 

containing current situation, roles and relations configuration, 

and the (correct) (re)action. The differences between the 

(re)actions given in the training examples and the (re)actions 

provided in the predefined situation network will drive the 

different steps of the algorithm. 

In the first step, the algorithm tries to directly modify its 

(re)actions using the existing situation network. If (re)action 

A is associated to situation S, and all training examples 

indicate that (re)action B must be executed instead of A, then 

B is associated to S and the association between A and S is 

deleted. 

 

Figure 2: Overview of the different steps of the algorithm. 

In the second step, the algorithm tries to modify the 

situation network. The situation split is executed when the 

supervisor perceives several situations (expressed by different 

(re)actions in the training examples) while the predefined 

situation network only perceives one situation (expressed by 

one (re)action). Thus the situation perceived by the 

predefined situation network may be too general and the 

algorithm tries to split it in sub-situations. The role, relations 

configuration of these sub-situations needs to be determined 

according to the given training examples (Section 4.2). After 

the situation split, sub-situations whose associated (re)action 

is the “erase” (re)action are deleted. 

4.2. Splitting Situations 

When splitting situations, a number of training examples 

indicate different (re)actions for one situation of the 

predefined situation network. Several sub-situations need to 

be created for these (re)actions. We must determine the 

characteristic role, relation configurations of these sub-

situations (Fig. 3). 

As a context is defined by a finite number of available 

roles and relations, the situations within this context can be 

represented as a fixed-sized vector containing one 0/1 value 

for each available role and several 0/1 values for each 

available relation. The value 1 means that the corresponding 

role or relation is valid; the value 0 means that the role or 

relation is not valid. As a relation is applied on entities 

playing roles, it is represented by one 1/0 value for each 

different role combination it can be applied to. A 

characteristic role, relation configuration for one situation 

may contain blanks (“-”) for those roles or relations that are 

not characteristic for this situation. A training example 

contains a vector with specific values reflecting the current 

role, relation configuration when recording the training 

example and the corresponding (re)action (given by the 

supervisor). As the context is defined by the available roles 

and relations, the description of the situations within this 

context  

The determination of the characteristic role, relation 

configurations of the sub-situations can be seen as 

classification problem. The (re)action labels of the training 

examples can be interpreted as class labels. For each class, we 

need then to determine the concepts or hypotheses based on 

the given role, relation vectors of the class. These concepts or 

hypotheses are then used to construct the characteristic role, 

relation configurations of the corresponding sub-situation. 

 

Figure 3: Splitting Situations with Find-S and 

Candidate Elimination algorithm. 

The first considered learning method is the conceptual 

learning algorithm Find-S ([7] chapter 2.4) which constructs 

the most specific hypothesis for each (re)action based on the 

role, relation configurations in the given training examples 

(Fig. 3). The resulting hypotheses for the created sub-

situations often contain, however, specific values for the 

existence or non-existence of roles or relations that are not 

necessary or characteristic. As a consequence, small 

variations in the role, relation configuration may not be 

covered by the created sub-situations because their 

hypotheses are too specific. 

To produce more general hypotheses for the sub-

situations, we consider the conceptual learning algorithm 

Candidate Elimination ([7] chapter 2.5). This algorithm 

constructs the most specific and the most general hypotheses 

for each (re)action based on the role, relation configurations 

in the given training examples. By combining the most 

general hypotheses for each (re)action, we construct the role, 

relation configuration for the corresponding sub-situations 

(Fig. 3). 

Both algorithms Find-S and Candidate Elimination have, 

however, the restriction that they can only find one 

conjunctive concept for each (re)action, i.e. if the training 

(1, - , - , - , - ) 

(1, 0, 1, 0, -)    Find-S 

(1, 0, -,  -, -)    C. El. 

( -, -, -, -, - ) 
Sit 1 

Sit 1a 

Sit 1b 

Training examples in Sit 1: 

Roles,Relations   (Re)action 

(1, 1, 1, 0, 1) A1 

(0, 0, 1, 0, 0) A1 

(0, 0, 0, 1, 0) A1 

(1, 0, 1, 0, 0) A2 

(1, 0, 1, 0, 1) A2 

Split 

Find-S 
Rol., Rel. conf.    “Class” 

( -, -, -, -, - )         A1 (Sit 1a) 

(1, 0, 1, 0, -)        A2 (Sit 1b) 

C. El.  
Rol., Rel. conf.    “Class” 

( -, -, -, -, - )         A1 (Sit 1a) 

(1, 0, -, -, -)         A2 (Sit 1b) 

Adapting Situations 

Situation 

Network 

Adapting (re)actions 

Splitting Situations 

Deleting obsolete Situations 

Learning Roles 

Supervisor 

Feedback 
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examples indicate that a (re)action is to be executed in two 

different complementary role, relation configurations, Find-S 

and Candidate Elimination will fail to construct several 

hypotheses (and thus sub-situations) for this one (re)action. 

This is due to the fact that neither algorithm can construct 

disjunctive hypotheses. 

We consider Decision Tree learning methods, in 

particular the algorithm ID3 [8], in order to address the 

limitation of conceptual learning methods. The idea is to 

construct a decision tree that classifies the different 

(re)actions found in the training examples of one situation 

(Fig. 4). 

The attributes of this decision tree are the roles and 

relation values (0/1 values of the vector). Each leaf of the tree 

is labeled with a (re)action (class). The path from the root of 

the tree to the leaf gives the characteristic role, relation 

configuration for the sub-situation to be created for this 

(re)action. We can have several leaves with the same 

(re)action, which corresponds to the creation of several sub-

situations for this (re)action (disjunctive hypotheses). 

 

Figure 4: Splitting Situations with Decision Tree 

algorithm (ID3). 

 

4.3. Learning Roles 

If the information supplied by training examples is not 

sufficient to discriminate characteristic configurations for the 

sub-situations during the situation split, the creation and 

learning of new roles need to be considered. This is the case 

when the supervisor gives different feedback while the system 

perceives same situation, role and relations configurations. 

Table 1: An example for learning a role. The role 

acceptance test is based on the calculus of the 

probability of the role value, given the entity position. 

A Bayesian Classifier could be used. 

Roles, 

Relations 

Feedback Observed  

Entity 

Properties 

Associated 

Role 

Configuration 

(1,0,0,1) A1 (Entity1, 101, 18) 

(Entity1, 105, 20) 

(Entity1, 108, 22) 

NewRole1 = 0 

(1,0,0,1) A2 (Entity1, 25, 0) 

(Entity1, 21, 2) 

(Entity1, 18, 5) 

NewRole1 = 1 

 

When creating a new role, we need to learn the 

corresponding acceptance test on the properties of the 

available entities. Learning a role acceptance test can be seen 

as classification problem. The different supervisor feedback 

items (different (re)actions) need to be distinguished based on 

data given on the properties of the entities. Table 1 gives an 

example referring to the system described in section 5. The 

entities and their properties are created by a tracking system 

running on video images of one wide-angle camera. The 

properties of an entity are its name and its current position in 

the image. Learning a role acceptance test corresponds here to 

learning a new characteristic entity position in the image. 

Given a high amount of sensor-based position data, a 

Bayesian learning approach for learning the role acceptance 

test seems to be appropriate for this example. 

A problem is to decide which entity or entities to chose 

for learning the role acceptance test. In the example we only 

refer to one available entity. If there are several entities 

available, the entity that allows distinguishing the supervisor 

feedback items in the best way needs to be chosen. When 

using a Bayesian approach, the maximum likelihood can be 

used for determining this entity. 

While the development of the situation network, i.e. 

adapting (re)actions and situations, can be seen as generic 

approach that is independent of specific perceptual 

components, learning new roles relies on the properties 

generated by these components. Thus the choice of the 

algorithms for learning the acceptance test as well as for 

determining the relevant entities depends on the available 

perceptions representing the entity properties. Algorithms for 

learning role acceptance test have been considered (Table 1) 

but not been implemented yet. 

(1, - , - , - , - ) 

(1, 0, -, -, - ) 

(1, 1, -, -, - ) 

(0, -, -, -, - )

  

1 0 

0 1 

a0 

a1 

Training examples in Sit 1: 

Roles, Relations   (Re)action 

(1, 1, 1, 0, 1) A1 

(0, 0, 1, 0, 0) A1 

(0, 0, 0, 1, 0) A1 

(1, 0, 1, 0, 0) A2 

(1, 0, 1, 0, 1) A2 

A1 

A1 A2 

Attributes: (a0,a1,a2,a3,a4) 

Decision 

Tree 

 

Rol., Rel. conf.    “Class” 

(0, -, -, -, - )         A1 (Sit 1a) 

(1, 1, -, -, - )        A1 (Sit 1b) 

(1, 0, -, -, - )        A2 (Sit 1c) 

Sit 1 

Sit 1a 

Sit 1b Split 

Sit 1c 
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5. Implementation 

A context model for office activity within the SmartOffice 

environment [9] of the PRIMA group has been designed and 

implemented. In this environment, entities are created by a 

robust tracking system [10]. 

 

Figure 5: Video image of the wide-angle camera of 

SmartOffice. Four presence detection zones of the 

tracking system are indicated. A white box next to the 

door is used for the creation of new targets (entities). 

One person is currently tracked. 

The position of the created entities determines several 

roles like comes_in or works_on_PC (Fig. 5). Additional 

roles are determined by the login of an entity (person) to a 

computer in the environment or specific appointments marked 

in the agenda of the logged entity (person). The 

not_same_entity_as relation is used to distinguish entities in 

the environment. The (re)actions of the system are based on 

the control of the Linux music player and the projection of 

different messages or presentations on different surfaces in 

the environment. The learning algorithms run on data base 

tables containing a representation of the current situation 

network and the training examples. A control process 

programmed in the forward chaining rule programming 

environment Jess [11] is used to execute the situation 

network. This situation network represented by rules is 

automatically generated from the data base tables of the 

learning algorithms. The supervisor feedback cannot be given 

while the user is acting in the environment (i.e. while the 

control process is running). Thus the control process and the 

learning algorithms need, at present, to run sequentially and 

not in parallel. 

6. Evaluation and Results 

To evaluate our method, two experiments have been executed 

on the predefined context model of the SmartOffice 

environment (figure 6). The experiments have the same goal 

concerning the evolution of the system services. The 

supervisor gives feedback based on these goals during the 

experiments. As we focus on the correct execution of the 

system services, we do a cross-validation by adapting the 

predefined situation network using the supervisor feedback of 

the first experiment and by evaluating the second experiment 

on the adapted situation network (and inverse). The 

evaluation is done on the number of correctly classified 

training examples, i.e. correctly executed (re)actions, as well 

as on the review of the adaptations of the predefined situation 

network.

 

Figure 6: Context model of the SmartOffice 

environment. Important Situations are S0 (empty 

room), S1 (newcomer enters SmartOffice), S2 (Person 

connects to and works on PC), S5 (Connected Person 

sits on couch) and S8 (Presentation in SmartOffice). 

 

Figure 7: Structural adaptations performed on the 

predefined context model of the SmartOffice 

environment by the method (Find-S, Candidate 

Elimination and Decision Tree algorithm). Situations 

S1 and S5 have been split into sub-situations. 

The goal of both experiments was to integrate the correct 

turn-on and turn-off of the Linux music player depending on 

the activities (=roles, relations) of the user. The music player 

should be switched on when a newcomer sits on the couch to 

have a rest, and switched off when the newcomer starts 

speaking or leaves the couch (concerned situation: S1). The 

music player should similarly be switched on and off for a 

connected person (concerned situation: S5). Figure 7 shows 

the adaptations of the concerned situations after the 

integration of the supervisor feedback. S1 has been split into 

additional sub-situations integrating sitting down on couch 

(S11), speaking on couch (S12) and leaving couch (S10). The 

additional sub-situations of S5 integrate sitting down on 

couch (S51) and speaking on couch (S52).  

Table 2: Confusion matrix for (re)action execution 

(Find-S). 

Find-S A0 A8 A9 

A0 0.87 0.04 0.09 

A8 0.50 0.50 0.00 

A9 0.50 0.00 0.50 
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Table 2, 3 and 4 show the results of the (re)action 

execution in the form of confusion matrices. (A8 switches on 

the music player, A9 switches off the music player, and A0 is 

the “do nothing” (re)action). 

Table 3: Confusion matrix for (re)action execution 

(Candidate Elimination). 

C. El. A0 A8 A9 

A0 0.91 0.04 0.04 

A8 0.66 0.33 0.00 

A9 0.75 0.00 0.25 

 

In all experiments, the structural development of the 

situation network corresponds to the expected changes. 

Concerning the correct classification of the training examples, 

i.e. the correct execution of the (re)actions, the Decision Tree 

algorithm (ID3) gives the best results. 

Table 4: Confusion matrix for (re)action execution 

(Decision Tree, ID3). 

D Tr. A0 A8 A9 

A0 0.83 0.09 0.09 

A8 0.00 1.00 0.00 

A9 0.00 0.00 1.00 

 

The improved results of Decision Tree approach are due 

to the fact that this algorithm supports disjunctive hypotheses. 

However, the Decision Tree algorithm tends to construct “too 

general” hypotheses for the sub-situations, which can lead to 

several inappropriate classifications. This is due to the fact 

that the Decision Tree algorithm prefers small trees to large 

trees, which means that general hypotheses are preferred to 

specific hypotheses for the sub-situations.  

7. Conclusions 

We have presented a learning method for evolving system 

services to changing user needs in an intelligent environment. 

The intelligent environment has been modeled as a situation 

network. This network is adapted according to feedback given 

by a supervisor using an algorithmic learning method. The 

results of the method are encouraging. The system services 

desired by the human supervisor are correctly integrated into 

the situation network structure.  

Given supervisor feedback and generated training 

examples are often not sufficient to decide which adaptation 

must be done to the situation network. The proposed role 

learning concept can help extending the training examples by 

additional roles and hence discriminating the necessary 

adaptations of the situation network. However, especially 

graph optimization opens a wide range of possible 

adaptations. Two different adaptations may cover the same 

(optimal) number of training examples. The two 

corresponding situation networks will, however, not have the 

same “meaning” for the supervisor. A possible solution is the 

extension of the learning to an interactive process. The 

learning system will verify ambiguous choices by asking the 

supervisor and the supervisor can intervene and correct when 

decisions of the learning system are wrong.  

The method presented in this paper relies on the correct 

detection of roles and relations, which are seen as perception 

modules encapsulating perception error handling. Further, the 

supervisor feedback needs to be consistent, which is not 

always the case in reality. Thus the focus of our future 

research will concern the extension of the context model and 

of the learning algorithms to fuzzy or probabilistic values by 

integrating the confidence values of the perceptual processes. 
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