
Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 3 1

Secur ing Anonymity in P2P Network

Byung Ryong Kim(1) & Ki Chang Kim(2) & Yoo Sung Kim(2)

(1) School of Computer Science & engineering, Inha
university, 253 Yonghyun-dong, Nam-gu, Incheon
402-751, Korea
doolyn@super.inha.ac.kr

(2) School of Information & Communication
engineering, Inha university, 253 Yonghyun-dong,
Nam-gu, Incheon 402-751, Korea
kichang@inha.ac.kr, yskim@inha.ac.kr

Abstract

Basically flooding-based P2P systems provide anonymity and
thus it is not possible to find the initial sender of packet and
the designated receiver of that packet. However it does not
provide anonymity where the IP addresses of nodes uploading
and downloading contents are revealed. So in order to
maintain anonymity we propose and test our techniques that
the receiver node of response packets on retrieval query is
agent node and the agent node provides contents service
between server and client. Through the proposed techniques it
was found that the identity of node is secured without using
encryption techniques which have been deployed in the former
anonymity protection techniques and control data
communications through all the nodes located between server
and client. The application of this concept of which result was
evaluated may be extended to many other current P2P systems
under operation.

1. Introduction

The recent P2P retrieval systems can largely be divided into
flooding-based and distributed hash table-based models.
FreeNet[2] and Gnutella[1,15] belong to Flooding model and
Tapestry[3,5], CAN[4] and Chord[6] to distributed hash table
model.
P2P systems are too free and irresponsible to secure reliability
as achieved in server-client environment. However it cannot
manage the nodes by nature and each node should maintain
itself with independent authority that each node must have
anonymity. Hence we propose packet-preemptive proxy
service techniques that maintain both high speed and
anonymity in flooding-based P2P file share systems requiring
anonymity.
In a flooding-based model broadcasted retrieval query and
ping packet basically provide anonymity but dynamic
routing[16] is not used so that they do not support anonymity
when uploading and downloading. Therefore this may result
in unintentional exposure of node information in P2P network
in which non-specific majority is participating. Thus attacks,
such as denial-of-service and storage overflow, may occur to
the exposed node, whether it is malicious or not.[7,8]
The existing techniques to secure anonymity include
MUTE[10], Onion Routing[12,13], Crowds[11] and
Mantis[9]. In order for MUTE to protect anonymity, file share
is made through other clients such as jondo. However this
slows speed in a large file because it transfers file through
many jondos. In Mantis, model supplementing this
consideration, UDP channel is used without passing through
jondos but this requires additional control data
communication for UDP channel. Onion Routing uses data
encryption to secure anonymity. Client should connect to
proxy performing encryption to firstly connect to Onion
Routing. Crowds was developed for user privacy while
browsing web site and which is similar to MUTE. Client

participating in Crowds requests contents not to server but to
other client participating in Crowds to get desired contents.
Anonymity is guaranteed by this technique.
Our goal is to preserve anonymity and provide retrieval and
file share service in a quick and easy way without using
additional control data communication for UDP
communication and file sending method passing through
number of jondos.

2. Summary

The core of this paper to protect anonymity is proxy service
by agent node receiving QueryHit between server and client.
We discovered the techniques to easily preserve anonymity in
flooding-based model using the properties of Query, QueryHit
and PUSH packets used in Gnutella protocol in an effort to
find simple way to secure anonymity without using existing
complicated techniques.
Passing through lots of intermediate nodes(jondos), QueryHit
is sent to client on the basis of dynamic routing. When one of
these nodes initially receives QueryHit the node is preempted
by relay node. After replacing IP address and Port number of
QueryHit components by relay node's own ip and port, the
relay node sends it to client through dynamic routing. And
this information is stored into table of which key is server's
session UUID value. Therefore the changed information can
be known later on using session UUID value. QueryHit,
replaced through dynamic routing, is sent to client. Client is
unable to know the server's address because of replacement of
QueryHit. Download is requested to relay node because of the
replacement. Using server's session UUID value PUSH packet
is created by relay node to which download service is
requested. Request to transfer file is made by sending the
created PUSH packet to server. Then receiving PUSH packet
the server communicates with relay node according to
Gnutella protocol. When it starts receiving file from the server
the file is sent to client without delay. Since agent node is
dynamically preempted when one transaction is finished, the
relay role is terminated although it is the same server-client
pair. In the next transaction dynamically other node is
preempted.

3. Existing Techniques to Secure Anonymity

Techniques to secure anonymity of server and client include
MUTE, Onion Routing, Crowds, and Mantis as shown on Fig.
1. MUTE does not provide file share service because server is
directly connected to client in order to secure anonymity.
Passing through many intermediate nodes such as jondo it
sends data(information/contents). So sending high capacity
file such as .avi or .divx will incur sizable waste of bandwidth
because it passes through many nodes.
In order to secure anonymous connection Onion Routing uses
data encryption to conceal routing header and make statistical
computation hard to detect routing path. To make the first

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 3 2

connection to Onion Routing, client must make routing path
and connect to proxy that encrypts data. Then client gets to
destination following the routing path through Onion routers.
Each router removes one layer of cryption. By repeating this
process client knows the next onion router and finally reaches
to the final destination. Inversely when getting back it reaches
to the final destination by adding encrypted data layer one by
one. Although it secures anonymity, it needs proxy between
network infrastructure and application and costs a lot for the
encryption.
Crowds is developed to protect user's privacy during web
browsing. To get contents client participating in Crowds does
not directly request contents to server having known the
server's address but requests contents to other jondos
participating in Crowds and anonymity is maintained this way.

S

S

S

S

C

MUTE, Crowds

Mantis

CS

Onion Routing

SC

Text Text
Text

Text

Forward-Channel

Back-Channel

Server

Client

Jondo(John Doe)

ProxyS

C Onion Router

Text

Figure 1. Existing Techniques to Secure Anonymity

Mantis is similar to Crowds but it instantly sends answer
without passing through jondo as shown on Fig. 1.
Concealing its own IP address, server sends file using UDP
but control data communication is necessary to control packet
loss aroused in the course of UDP communication between
server and client and to control retransmitting. Control data
communication is performed by passing through many jondos
between server and client.

4. Service Model

The packet-preemptive proxy service model that we propose
is based on Gnutella protocol. Packets used here are Query,
QueryHit, and Push. In this section the basic definition of the
proposed model and communication protocol will be covered.

4.1. Concept

Our service model is based on dynamic routing. Using
dynamic routing enables to select agent node that well
understands the relation between server and client and enables
the selected agent node to perform proxy role of server and
client. In the course of carrying out proxy service, we used
Query, QueryHit and PUSH packets which have been used in
general flooding based model. The format of each packet is
shown on Fig 2. Bold border indicates packet header.

Descriptor ID Payload
Descr iptor

TTL Hops Payload
Length

Minimum
Speed

NUL
Terminator

Number
of Hits Por t

IP
Address

Speed
Result

Set
Servent

Session UUID
Header

Servent
Session UUID

File Index
IP

Address
Port

Optional
Push Data

Optional
QHD Data

Header

QueryHit
Packet

Push
PacketHeader

File
Index

File
Size

Shared
File Name

NUL
Terminator

Optional
Result Data

NUL
Terminator

Result
Structure#

Search
Cr iter ia Str ing

(Optional)
Query Data

Query
Packet

Result
Structure

Figure 2. The Format of Query, QueryHit and PUSH Packet

Node1 Node2

TTL:7
Hops:0

Node3 Node4

TTL:7
Hops:0
IP:node7¡̄s IP
Port:node7's Por t
UUID:node7's UUID

TTL:6
Hops:1
IP:node6's IP
Port:node6's Por t
UUID:node7's UUID

TTL:1
Hops:6
IP:node6's IP
Port:node6's Por t
UUID:node6's UUID

Node5 Node6 Node7 Node8

TTL:2
Hops:5 PUSH

Figure 3. Contents Download by Switched QueryHit

Assuming that TTL is 7 and overlap receiving is not allowed
in Fig 3, if node1 broadcasts Query then it is sent to node8 by
dynamic routing. QueryHit is sent at node7 and node6, the
first recipient of this packet, replaces IP and Port of this
packet by its own IP and Port. Then node6 remembers session
UUID value of node7 to create PUSH packet. The replaced
QueryHit is sent to node1 by dynamic routing. Since the
information of node having retrieved contents is replaced
from node7 to node6, node1 requests download to node6.
Node6 that has received HTTP GET request, knows that
contents are in node7, comparing session UUID value which
it remembers with server session UUID value requested by
HTTP GET. node6 creates PUSH packet and sends it to
node7. node7 has received PUSH packet so that it begins to
send file according to Gnutella protocol. node6 receives file
and simultaneously sends the file to node1. node1 and node7
are secured with respect to anonymity for node6 takes a proxy
role between node1 and node7. If download request is
concentrated in a particular relay node, because relay role can
be assigned to the neighboring node that it can prevents relay
load from concentrating into specific a node.

4.2. A Case that server node is in firewall/NAT
environment

If the IP of QueryHit header is private IP, the concept
described in 4.1 is to be applied, as it is, to the first node
receiving QueryHit from server node located in firewall/NAT
environment. This is because to receive QueryHit packet
means that the server and relay node is connected. Therefore
it is solved if the relay node sends PUSH packet to server
node. Originally PUSH packet was made to share file with
Firewalled Servent

4.3. Case that relay node(agent) is in firewall/ NAT
environment

If the first node receiving QueryHit is under firewall/NAT
environment, client cannot request service directly to relay
node. In this case without replacing QueryHit relay
node(node6) sends it to the neighboring node through
dynamic routing. So the relay role is to be assigned to the
neighboring node(node5). The delegated node conforms to
the packet-preemptive proxy service techniques we proposed
in 4.1.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 3 3

Node1

TTL:7
Hops:0

Node5 Node6
PONG
Node7's IP,Por t
TTL:1
Hops:0

QueryHit

è̈

é̈

ë̈

QueryHit
ê̈

Node7

Q
ue

ry
H

it

ç̈

Not Connecte
d ??

PU
SH

ì̈

PO
N

G
N

od
e5

's
 I

P
,P

or
t

T
T

L
:1

H
op

s:
0

è̈

ê̈

HTTP GET
Connecte

d

Figure 4. The Process flow in case that relay node is in
firewall/NAT environment

Although the delegation is made as shown on Fig 5 if there is
no direct connection between the new relay node(node5) and
server(node7), how will the PUSH packet be sent to server?
To solve this problem the following procedure is to be
performed to firewalled relay node (node6).

1. Firewalled relay node pretends to receive PING
from server and new relay node(node5) and send
PONG as response value.

2. Then not replacing QueryHit it sends QueryHit to
new relay node.

3. New relay node receiving PONG and server try to
connect to each other. New relay node replaces
packet and sends it to client.

4. Client sends HTTP GET to new relay node.
In the long run, Firewalled relay node delegates relay role by
not replacing QueryHit but sending it to the neighboring node

5. Simulation and result

Simulation was based on minism simulator[14]. Minism
generates a random topology with a particular node degree,
then runs a few simulations with a given ttl to see how many
nodes are reachable and how many packets are wasted. We
applied our service algorisms to it and executed test by
developing new simulator.
The number of nodes participating in P2P network was
maximum 105, the number of connection maximum 7 and
TTL value 5. Network was randomly composed and client
broadcasted Query. It was assumed that every node having
contents among the nodes receiving Query sends QueryHit
and client downloads only one choosing from many
QueryHits. Four aspects were evaluated; first, if there is a case
that relay node is not selected or not, second, if double relay
node is selected or not, third, if download requests are
concentrated to a certain relay node, and lastly, we evaluated
jondo overhead which was chosen as relay node.
Fig. 5 shows the average rate of download that did not use
relay node among the whole 103 contents downloads. The
number of nodes sharing file was set as 10% to 50% of the
total nodes and each was evaluated. According to the test
result, download without relay node can be made since our
service uses TTL and Hops but when the number of node was
more than 500 almost every download service was made via
relay node. And double selection was not found.
To evaluate whether downloads are concentrated on a specific
node it was assumed that retrievable contents are only in
specific nodes and simulation was made to find whether there
is a case that preemption is excessively made to a specific
node among the neighboring nodes. When it was assumed
that the most popular contents are only in a specific server,
the relay rate of neighboring nodes was evaluated. The test
result suggested when the number of nodes was very small the
difference was big but in general it displayed uniform
distribution. Also it suggested that download relay role was

uniformly performed by server's neighboring nodes which
may be selected as relay node.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 50 100 500 1,000 5,000 10,000 100,000

Case that 10% of the whole node shares file
Case that 30% of the whole node shares file
Case that 50% of the whole node shares file

Number of Nodes

T
he

 a
ve

ra
ge

 r
at

e
of

 d
ir

ec
t

do
w

nl
oa

d

Figure 5. The average rate of download that did not use relay
node

0%

10%

20%
30%

40%

50%

60%

70%
80%

90%

100%

#1 #2 #3 #4 #5 #6 #7
Each of the neighbor node of server node

T
he

 a
ve

ra
ge

 r
at

e
of

 r
el

ay

10 100

500 1000

5000 10000

Number of nodes

Figure 6. Rate of relay by 7 neighboring nodes among 103
downloads on specific server

Fig. 7 compares the amount of packets relayed by jondos in
packet preemptive proxy service vs. MUTE.Our tests were
performed in the network simulator Simnet[16], with the
client and server transferring 1000 packets through a several
relay jondo.Packet amount was produced by calculating the
number of packets relayed by relay jondo.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 2 3 4 5 6

MUTE

Packet-preemptive Proxy Service

Number of jondosN
um

be
r

of
 P

ac
ke

ts
 r

ec
ei

ve
d

by
 r

el
ay

 j
on

do
s

Figure 7. Packets forwarded by relay Jondos in packet-
preemptive proxy service vs. MUTE

Basically bulk-data sent from crowds and MUTE is relayed
hop-by-hop in P2P systems. But lots of jondos are not used in
packet preemptive proxy service techniques. The relay role is
performed by a jondo uniquely preempted between the server
and client. Bulk-data is maximum 32kb including 16Kb of the
actual data and header in Mute. When sending the maximum
32Kb packet if bulk multimedia file is sent through each
jondo it can be expected that increasing jondo number will
cause the increase in relayed packets as well. But The number
of relayed packets was constant in packet preemptive proxy

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 3 4

service since it preempts only the unique jondo as relay node
as shown on Fig. 3.

6. Discussion

Our aim is to preserve anonymity between server and client
without such methods as encryption, control data transfer
passing through many jondos for UDP communication and
passing through many jondos connected between server and
client. The mentioned methods require high cost for
encryption or additional control data communication using
many jondos for transfer control. Moreover downloading
large data aroused heavy network overhead because it passes
through many jondos. And download speed will be that of the
slowest jondo on the link
In order to solve these problems, we proposed and tested our
service techniques. Anonymity of server and client was
maintained by preempting the first jondo receiving retrieval
query response packet as relay jondo. Therefore in the
techniques proposed in this paper when sending file it passes
through not many jondos but just only one relay jondo. The
test results found that complete anonymity was not preserved
because occasionally it does not pass through relay jondo in
case of very small P2P. Except that, anonymity was fully
secured. Therefore if network size is not so small, we evaluate
with the proposed techniques anonymity can preserved
without encryption technique, UDP communication and file
share service technique via many jondos.
Previous studies were complicated but the advantages of the
proposed techniques are its simplicity and easiness applicable
to existing P2P network. We believe that our service is very
efficient in terms of low cost and minimizing the loss of
anonymity when providing P2P file share service.

7. Conclusion

Anonymity is important issue in P2P file sharing systems. We
have studied to find simple way to preserve anonymity
without data transfer passing through many jondos and
additional control data transfer for UDP communications
through many jondos.
Consequently we proposed and implemented our service
systems to secure anonymity in both server and client side.
The core of this service is that the random jondo, located in
transfer path of QueryHit sent by server, is selected as agent
node and proxy service for data transfer is provided between
server and client by the selected jondo.
Implementation showed that file share is performed with
anonymity secured between the server and client since relay
node provides proxy service between the two parties. The test
result showed that the preempted relay node was never
overlapped and the chance for the server's neighboring nodes
to be selected as relay node displayed uniform distribution.
Therefore it is expected that this can be effectively used in not
only the current Gnutella but in many other P2P file share
systems.
We will try to preserve complete anonymity of server and
client in network. With this proposed techniques, anonymity
of server and client can be preserved only when there is at
least one node in transfer path of QueryHit. Therefore we will
study how to choose other relay node outside transfer path of
QueryHit.

Acknowledgements

This work has been supported by INHA UNIVERSITY
Research Grant.

References

[1] The Annotated Gnutella Protocol Specification v0.4 (1).,
http://rfc-gnutella.source
forge.net/developer/stable/index. Html

[2] The Freenet Project., http://freenet.sourceforge.net/
[3] Kirsten Hildrum, John Kubiatowicz, Satish Rao and Ben

Y. Zhao. (2004) Distributed Object Location in a
Dynamic Network, Theory of Computing Systems.

[4] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, Scott Schenker, A scalable content-addressable
network, Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications table of contents.

[5] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C.
Rhea, Anthony D. Joseph, and John Kubiatowicz. (2004)
Tapestry: A Resilient Global-scale Overlay for Service
Deployment, IEEE Journal on Selected Areas in
Communications.

[6] Ion Stoica, Robert Morris, David Liben-Nowell, David R.
Karger, M. Frans Kaashoek, Frank Dabek, Hari
Balakrishnan. (2003) Chord: a scalable peer-to-peer
lookup protocol for internet applications, IEEE/ACM
Transactions on Networking.

[7] Neil Daswani, Hector Garcia-Molina. (2002) Query-flood
DoS attacks in gnutella, Proceedings of the 9th ACM
conference on Computer and communications security
table of contents.

[8] P. Krishna Gummadi, Stefan Saroiu, Steven D. Gribble.
(2002) A measurement study of Napster and Gnutella as
examples of peer-to-peer file sharing systems, ACM
SIGCOMM Computer Communication Review.

[9] Stephen C. Bono, Christopher A. Soghoian, Fabian
Monrose. (2004) Mantis: A Lightweight, Server-
Anonymity Preserving, Searchable P2P, Information
Security Institute of The Johns Hopkins University,
Technical Report TR-2004-01-B-ISI-JHU.

[10] MUTE: Simple, Anonymous File Sharing., http://mute-
net.sourceforge.net/

[11] Michael K. Reiter, Aviel D. Rubin. (1998) Crowds:
anonymity for Web transactions, ACM Transactions on
Information and System Security (TISSEC).

[12] Roger Dingledine, Nick Mathewson, Paul Syverson.
(2004) Tor: The Second-Generation Onion Router,
Proceedings of the 13th USENIX Security Symposium.

[13] Michael G. Reed and Paul F. Syverson. (1999) Onion
Routing, Proceeding of AIPA '99.

[14] Gnutella Developer Forum., http://groups.yahoo.com/
group/the_gdf/

[15] The Gnutella Protocol Specification v0.41 Document
Revision 1.2.

[16] A. Oram, Peer-to-Peer, p.106-107, O’Reilly, Mar, 2001.

