
Joint sOc-EUSAI conference Grenoble, october 2005

Multimodal Appliance Cooperation based on Explicit Goals:
Concepts & Potentials

Thomas Heider and Thomas Kirste

Mobile Multimedia Information Systems Group
Rostock University, Germany

{th,tk}@informatik.uni-rostock.de

Abstract
Smart Environments are increasingly composed from individ-
ual components (smart appliances) that have to assemble them-
selves into a coherently acting ensemble. This requires software
technologies that enable appliances to cooperate spontaneously
on behalf of the users needs.

In this paper we will illustrate why a goal based approach
is necessary and how explicit goals can be used to find system
comprehensive strategies and how goals can be used as a bench-
mark to evaluate the system design.

1. Introduction
In the future we will have intelligent systems, where people are
surrounded by intelligent intuitive interfaces that are embedded
in all kinds of objects. These environments will be capable
of recognising and responding to the presence of different in-
dividuals in a seamless, unobtrusive and often invisible way.
Such kind of systems are described for example in the visions
of “Ubiquitous Computing” [1] or “Ambient Intelligence” [2].
They share the belief of a smart, personal environment which
characterizes a new paradigm for the interaction between a per-
son and his everyday surroundings: Smart Environments are
aware of the user and his surroundings and are equipped with
computing and communication capabilities to make intelligent
decisions in automated and situation-aware fashion.

However, Smart Environments will have to be composed
from individual components (smart appliances) that have to as-
semble themselves into a coherently acting ensemble. This re-
quires software technologies that enable appliances to cooperate
spontaneously on behalf of the users needs.

A rather popular scenario illustrating this application area is
the smart conference room (or smart living room, for consumer-
oriented projects) that automatically adapts to the activities of
its current occupants. Such a room might, for instance, auto-
matically switch the projector to the current speakers presenta-
tion as she approaches the lectern, and subdue the room lights -
turning them up again for the discussion.

Such a scenario doesn’t sound too difficult, it can readily
be constructed from common hardware available today. Todays
smart environments in the various research labs are usually built
from devices and components whose functionality is known to
the developer. So, all possible interactions between devices can
be considered in advance and suitable adaptation strategies for
coping with changing ensembles can be defined. When look-
ing at the underlying software infrastructure, we see that the
interaction between the different devices, the intelligence, has
been carefully handcrafted by the software engineers, which
have built this scenario. This means: significant changes of the
ensemble require a manual modification of the smart environ-
ments control application.

This is obviously out of the question for real world appli-
cations, where people continuously buy new devices for em-
bellishing their home. Enabling the devices to configure them-

selves into a coherently acting ensemble, requires more than
setting up a control application in advance. Here, we need soft-
ware infrastructures that allow a true self-organization of ad-
hoc appliance ensembles, with the ability to afford non-trivial
changes to the ensemble.

Things will become even more complicated when looking
at the visions of “The Invisible Computer” from Don Norman
[3] or “The Disappearing Computing” from the FET-IST [4].
This raises the following questions:
• How do you interact with smart things you are not aware of?
• How do you control devices you do not percieve?
• How to do this in a dynamic environment?

When dealing with these challenges indicated above, we
can distinguish two different aspects here: Architectonic Inte-
gration and Operational Integration. Architectonic Integration
refers to the integration of the device into the communication
patterns of the ensemble. Operational Integration describes the
aspect of making (new) functionality provided by the device
(or emerging from the extended ensemble) available to the user.
Obviously, both aspects eventually have to be accounted for by
a Smart Environment Software Architecture. The aspects of ar-
chitectonic integration we have discussed here [5]. In this paper
we will look at potential concepts for addressing the challenges
of Operational Integration.

We will show that to cope with the problems of invisible
computer and dynamic infrastructures we have to rely on ex-
plicit goals to allow the smart ensemble to cooperate sponta-
neously on behalf of the users needs.

The remainder of this paper is structured as follows: In Sec-
tion 2 we review how present-day Smart Environment projects
have addressed the raised questions. In Section 3, we outline
the concepts of our approach. In Section 4 we present different
realizations of our approach. Section 5 will give a conclusion
and an outlook.

2. Present-day Smart Environment
Projects

A Smart Environments must identify the user’s intention and, in
response, it needs to be able to generate multi-appliance strate-
gies for a coherent ensemble reaction. It is now interesting to
look at the means current projects employ for performing these
obligations. Typical examples are for instance Microsoft’s Ea-
syLiving [6] and MavHome from UTA [7].

The intelligent agents of MavHome for example predict
the inhabitants next action in order to automate selected repet-
itive tasks for the inhabitant. This prediction is based only on
previously-seen inhabitant interaction with various devices. In
order to do this prediction the researcher of MavHome have
saturated the house with sensors and characterize inhabitant-
device interaction as a Markov chain of events and utilize an
Active-LeZi algorithm to do the prediction. To learn strategies
they use a reinforcement learning agent.

p. 271

Joint sOc-EUSAI conference Grenoble, october 2005

Table 1: Smart Environment Projects

Project Intention Analysis Strategy Planning? Strategy Source
MavHome, UTA Learning and Prediction, ALZ Learned Procedures Learned from User
The Adaptive House, Boulder Learning and Prediction, NN Learned Procedures Learned from User
The Aware Home, GaTech Context Widgets; MySQL Rule Set (manually eng.) System Designer
Easy Living, Microsoft Geometry Model Rule Set (manually eng.) System Designer
AIRE, MIT Oxygen Rule-based Programming Rule Set (manually eng.) System Designer
Intelligent Classroom, NWU Plan Recognition Rule Set (manually eng.) System Designer

The EasyLiving Geometric Model (EZLGM) provides a
general geometric service for ubiquitous computing, focusing
on in-home or in-office tasks in which there are input/output,
perception and computing devices supporting multiple users.
EZLGM provides a mechanism for both determining the de-
vices that can be used for a user interaction and aiding in the
selection of appropriate devices. The EasyLiving system has
behavior rules that cause things to happen automatically when
certain relationships are satisfied in the world model.

Table 1 summarizes the intention analysis and strategy gen-
eration mechanisms for a variety of well-known Smart Envi-
ronments projects. As can bee seen, there are two basic ap-
proaches to strategy generation: (a) learn from user – by ob-
serving the user’s interaction with the infrastructure, as is done
by MavHome (b) learn from system designer – by receiving a
set of behavioral rules, as has been done for EasyLiving.

Unfortunately, both approaches are not viable any more, as
soon as we look at dynamic ensembles.
Why the system designer can’t provide the strategies:
Consider the example outlined in Figure 1, which shows the
built-in infrastructure of two hypothetical conference rooms is
displayed (greenish boxes). The room at left provides two
beamers and a video crossbar, enabling a rather straightforward
way for swapping two presentations. At right, the conference
room just contains a single beamer; the second one has been
presumably provided by an attendee. (In both sketches, the red-
dish boxes denote components that have been added dynami-
cally.)

Clearly, both conference rooms require two significantly
different strategies for realizing the user’s goal of swapping two
presentations. And, while in the built-in case one maybe could
expect the room designer to provide a suitable macro, this is not
realistic for the ad-hoc situation: No designer of a smart room
can be expected to anticipate every possible ad-hoc extension
of the built in infrastructure and to provide control strategies for
every possible activity that could be performed with the thusly
extended ensemble.Therefore, approaches such as EasyLiving
are not viable for the case, where the environment’s capabilities
are provided by a dynamic ensemble.
Why the system can’t learn the strategies from the user:
The approach taken by MavHome, to learn strategies from the
user, is not an option either: If a substantial set of devices is
invisible to the user, they can obviously not become part of a
control strategy the user might develop. Therefore, a system
can not learn from the user how and when to use these devices.

Since in dynamic ensembles neither system designer, nor
system user have an overview over the complete ensemble and
its potential, there is no human being that could provide strate-
gies to this ensemble.

Either, the user has to be made aware of the available de-
vices and their potential (pushing the responsibility back to the
user), or the ensemble itself must become able to develop strate-
gies on its own, based on the user’s objectives. With respect to
this, it should be noted that the systems developed in the above
projects have no explicit notion of the user’s objectives: They
learn procedures from the user (or receive them from the sys-
tem designer), but they have no concept of the effect of these

procedures with respect to the user’s objectives.
The consequences of the Ubicomp Visions are:

• Disappearing Computer: The system can’t learn the strate-
gies from the user!

• Computers are everywhere - dynamic ensembles: The sys-
tem designer can’t predict the ensemble and therefor can’t
provide predefined system strategies!

• So: Strategies have to be generated dynamically by the en-
semble!

3. Goals
The consequense of disappearing computer and dynamic en-
sembles is that we need appliances that cooperate sponta-
neously and are able to generate strategies that accomplish the
goal of the user. To make that possible we rely on goal based
interaction.

3.1 Goal based Interaction

When people are using their technical infrastructure they have
certain goals they want to achieve; a certain satisfaction they
want to experience. This goal-based nature of users is agreed in
the field of cognitive psychology. But todays engineered envi-
ronments force us to think of interaction in terms of the individ-
ual functions that the numerous devices provide: functions such
as “on”, “off”, “play”, “record”, etc.. When interacting with de-
vices, we select, parameterize, and then execute functions these
devices provide. Upon execution, they cause an effect: a broad-
cast is recorded on videotape, the light is turned brighter, and so
on.

But then, a user is not really interested in the function he
needs to execute on a device - it is rather the functions effect
which is important.

This observation immediately leads to the basic idea of
goal-based interaction. Rather than requiring the user to invent
a sequence of actions that will produce a desired effect (goal)
based on the given devices and their capabilities, we should al-
low the user to specify just the goal (I want to see Star Wars
now!) and have the ensemble fill in the sequence of actions lead-
ing to this goal. Goals allow services to be named by their se-
mantics - i.e., by the effect they have on the users environment -
thereby evading the problems of syntactical service addressing.

Goal-based interaction requires two functionalities: Inten-
tion Analysis1, translating user interactions and context in-
formation into concrete goals, and Strategy Planning, which
maps goals to (sequences of) device operations (see Figure 2).

3.2 Explicit Goals

In order for a system to autonomously generate strategies for
achieving certain goals, we need a mechanism to explicitly rep-
resent goals, which allows the system to reason about goals
and different ways for achieving them. Specifically, we need a
declarative representation of goals. The application area Smart

1In the project EMBASSI[8] we used for example speech recognition
to translate user interaction into system goals.

p. 272

Joint sOc-EUSAI conference Grenoble, october 2005

Video Crossbar

Beamer 1 Beamer 2

Notebook
Presenter

PCW
LA

N

swap() {
 crossbar.switch(In1,Out2);
 crossbar.switch(In2,Out1);}

(a) built-in

Beamer 1 Beamer 2

Notebook
Presenter

PCW
LA

N

swap() {
 Notebook.copyFile(x,PresenterPC);
 PresenterPC.copyFile(y,Notebook);
 Notebook.show(y,ySlide);
 PresenterPC.show(x,xSlide);}

(b) ad-hoc (c) Example room

Figure 1: Achieving the same effect with different ensembles

Intention Analysis

Strategy Planning

Goals

Actions

Appliances

Figure 2: Principle of goal based interaction

Environment is concerned with achieving effects of interest to
the user in his current environment – therefore, an explicit rep-
resentation of user goals is basically given by a suitable state
model for the environment. Goals are then represented by state
vectors that are to be made true in the given environment.

Once the concept of explicit declarative goals is made avail-
able, it serves two purposes: (a) it allows goal-based interaction
for the user (b) it is the foundation for the autonomous compu-
tation of control strategies by the ensemble.

So, we are no longer restricted to strategies that are either
learned from the user or from the system designer – the ensem-
ble itself is leveraged to unsupervised spontaneous cooperation.

Following, we give two examples for the explicit definition
of goals and the accompanying strategy computation mecha-
nism.

4. Exploiting Goals
4.1 Achieving Effects

Once an explicit declarative representation of the user goal is
available, it becomes possible to exploit partial-order planning
mechanisms. This requires to describe the operations provided
by the available devices as precondition/effect rules, where the
preconditions and effects are based on the environment state
model. These rules then can be used by a planning system for
deriving strategies for reaching user goals, which consider the
capabilities of all currently available devices. The planning sys-
tem receives the goal identified by the Intention Analysis. It
must then find a strategy that changes the environment from its
current state to the goal state. This can be understood as a clas-
sical planning problem:

• The goal is given as a set of positive and negative literals in
the propositional calculus.

• The initial state of the world (resp. the state of the system
and the environment-condition which is known to the sys-
tem) is also expressed as a set of literals.

• The actions provided by the available devices (“operators”)
have to be characterized using a suitable definition lan-
guage. It describes the action’s relation to the environment:
it contains a set of preconditions that must be true before the
action can be executed and a set of changes, or effects, that
the action will have on the world. Both the preconditions
and effects can be positive or negative literals.

p. 273

Joint sOc-EUSAI conference Grenoble, october 2005

Figure 3: Goal-based ensemble control: Example

The critical aspect here is the expressive power of the model
used for describing device operators, which needs to be strong
enough to capture at least the operational semantics of todays
consumer appliances.

4.1.1 Concrete example

As example, consider the situation outlined in Figure 3, left,
where a user would like to increase the brightness of his TV
set. Assuming the TV is already set to maximum brightness,
the sensible reaction of the ensemble would be the one given
at right: reduce ambient light. In order for an ad hoc ensemble
to arrive at this conclusion, TV set, lamp, and shutter must
provide a description of their capabilities, similar to the one
given below2:

The Lamp’s impact on the Environmentstate:

Action: dim-down(?x)
Precond: luminosity(?x) = high
Effect: luminosity(?x) = low

The Shutter’s impact on the Environmentstate:

Action: closeShutter(?x)
Precond: open(?x)
Effect: ¬open(?x) ∧ luminosity(?x) = low

The TV’s dependance of the Environmentstate:

Axiom: ambBrightness-low
Context: ∀?x ∈ dom luminosity : luminosity(?x) = low
Implies: ambientBrightness = low

Axiom: increaseTVBrightness(?x)
Context: brightness(?x) = max ∧ ambientBrightness = low
Implies: brighter(?x)

Then, based on a specific situation given by
Inits: (brightness(TV) = max ∧ luminosity(Lamp)= high ∧
dimmable(Lamp) ∧ open(Shutter))
a suitable plan for the Goal: brighter(TV) could then be com-
puted as Plan: [dim-down(Lamp), closeShutter(Shutter)].

4.1.2 Requirements for Planning Tools

Providing a suitably expressive operator definition language is
not a completely trivial requirement when looking at the host of
features included in modern technical environments. But with
expressiveness comes computational intractability – the more
expressive a language is, the more computation is required to

2For sake of brevity, this capability definition has been very much
simplified.

reason about sentences in that language. On the other hand, the
solution capability of the planning system determines the space
of the possible functionality of the device components. For ex-
ample, the choice of discrete operators obviously excludes de-
vices that provide continuous functions. So finding the right
balance between expressiveness and computational tractability
is very important for our application domain.

The experience from the modelling of our domain has
shown that we need a planning environment that supports condi-
tional effects and disjunction in the preconditions – this allows
a compact representation of device operator sets. Furthermore
it is mandatory to have universal quantification in the precon-
ditions and the effects. This for instance allows to define op-
erators that apply to an arbitrary number of objects – which is
extremely important in an environment that is dynamically ex-
tensible.

For our first running prototype we used the UCPOP plan-
ner. But the experience has shown, that the expressiveness of
this systems operator definition language was not well suited for
modeling various problems of our application domain. Espe-
cially the feasibility to modeling temporal and continuous pro-
cesses was missing, what is necessary to provide a reasonable
time and resource management. Important is also to be able
to representing mixed discrete/continuous domains. Amongst
other approaches from different researchers the PDDL2.1 lan-
guage [9] goes in this direction. PDDL2.1 was the input lan-
guage for the 3rd International Planning Competition. This
competition is a biennual challenge for the planning commu-
nity, inviting planning systems to participate in a large scale
evaluation. Consequently there are now quite a lot planning sys-
tems which can process domains modelled in PDDL. Moreover
it gives an overview about the performance of the available sys-
tems. In the current implementation of our planning component
we use the systems Metric-FF , LPG and MIPS. Our default
system is Metric-FF. Should it find no solution for the given
problem, automatically one of the other systems gets the task to
find a solution. See [10] for details.

4.1.3 The ontology

The description of the component functions and capabilities
as operators for the planning domain is essential. In order
to support the interoperability of devices provided by differ-
ent vendors, we need a shared understanding of the com-
mon environment domain they operate upon – a uniform on-
tology. Standardized environment ontology concepts such as
ambientBrightness, luminosity, etc. make it possible to de-
velop the components operator definitions independently from
each other. Different vendors have to adhere to these ontol-
ogy concepts as an explicit specification of the environment

p. 274

Joint sOc-EUSAI conference Grenoble, october 2005

qmax = max
ym∈Y M
dm∈DM

(

∑
u∈User

d∈Document

i(d,u)∗ max
y∈dm d

v(ym y,u)∗ p(y,ym y)

)

/

(

∑
u∈User

d∈Document

i(d,u)

)

Figure 4: Maximum Quality Function for a Multi-User Multi-Display Environment

aspects for their specific planning subdomains. If different
components use common concepts for the same features, e.g.
ambientBrightness for the capability of a lamp and of a vene-
tian blind (by daylight), a cooperation is feasible. The vendor
of a component characterizes its products in accordance with
the specification of the ontology and the potentialities of the
chosen problem-specification language. The planning opera-
tors will reasonably abstract from the device’s concrete internal
state and use a simplified state model that is tailored towards
attaching the operators’ environmental effects.

4.2 Resource Scheduling/Optimization

Another important application area is the definition of an opti-
mal ensemble behavior regarding the mapping of (sub)-tasks to
available resources. Here, a metric has to be defined that de-
scribes, how “good” a certain mapping (“schedule”) of tasks to
the available resources is and which allows to compare differ-
ent schedules with respect to their optimality. So, these types
of goals provide an explicit statement of a system designer’s
idea of optimal ensemble behavior3. This can be regarded as
a theory of optimal ensemble behavior. The ensembles respon-
sibility w.r.t. unsupervised spontaneous cooperation is then to
jointly approximate this global optimum as good as possible.
These implicit goals will be triggered by the situation through
the intention analysis and must then be achieved by the appli-
ance ensemble. In this section we present an example scenario
of a multi-display environment.

In meeting scenarios, where many people come together,
many documents have to be visible for the participants. The
accessing of digital information in environments like meeting
rooms is increasingly supported by new available technologies.
For example the concept of projecting various content on dif-
ferent surfaces in a real environment including walls, floors and
desks has been proposed recently. Pinhanez for example in-
troduced an interesting method for a ubiquitous display called
Everywhere Display [11] which uses a projector with a pan-tilt
mirror for covering a large area with a single or a few projec-
tors. What the available technologies are lacking of, is a concept
of what information (document) should be displayed on which
display (“Display Mapping”).

In our scenario we have a meeting room with an ad-hoc
ensemble of different projectors, steerable projectors, electric
screens, notebooks and a number of users (see Figure 5 to get
an idea). Now, it is interesting to provide an explicit represen-
tation of such an ensemble’s optimal behavior with respect to
the Display Mapping. This representation is given by Fig. 4:
qmax provides a global and generic definition of an ensemble’s
optimal behavior. Once qmax is given, it allows any ensemble to
optimize its Display Mapping.

This specific formulation of qmax is based on the concepts
of Visibility / Projectability and Importance. Obviously, this
definition of qmax represents the idea that all participants of the
meeting can see the documents that are important for the re-
spective participant in the best possible way.
The Visibility value results from the angle between the view di-
rection of the user and the respective screens:

3Interestingly, in contrast to the user goals discussed in the previous
section, scheduling objectives tend to be predefined, implicit goals.

Visibility v : Sur f ace×User → [0;1], e.g. simplified as:

v(s,u) = max

{

0,
〈~ns,~u−~s〉
‖~u−~s‖

}

The Projectability value results from the angle between the pro-
jection direction and the respective (electric) screens:
Projectability p : Display×Sur f ace → [0;1]
The Importance value depends on the agenda of the meeting and
the role of the user in the different situations:
Importance i : Document ×User → [0;1]
The goal is the optimization of the function qmax in Figure 4
which results in a Display Map, which associates each display
(e.g. a steerable projector) with a display surface (e.g. a projec-
tor screen) and a Document Map, which associates each docu-
ment with a display:
Display Maps: Y M = Display → Sur f ace
Document Maps: DM = Document → PDisplay
Note that the definition of qmax in Fig. 4 is obviously not com-
plete – for instance, it lacks a notion of “history”, that would
keep a document from confusingly hopping from display to dis-
play as the user slightly shifts position. However, the objective
here has not been to develop the optimal definition for qmax,
but rather to argue that explicit global optimization goals are re-
quired in order to allow dynamic ensembles to cooperate. Only
goal definitions that completely abstract from the concrete en-
semble composition – such as qmax – enable arbitrary ensem-
bles to optimize their behavior.

4.3 Experimental settings

The two pictures in Fig. 5 show the behavior of a typical en-
semble controlled by qmax. In the left image of Fig. 5 we have a
scenario with one steerable projector, one screen and two users,
whereby the right user gives a presentation. After adding a sec-
ond beamer and two notebooks the system automatically calcu-
lates a remapping of the document display assignment (based
on the maximum quality function of Fig. 4), which you can see
in the right image.

We have tested this scenario in our Environment Simula-
tion System, a visual simulation tool for Smart / Instrumented
Environments that provides a simple rendering & physics simu-
lation server, to which device and strategy planning agents may
connect via sockets. The behavior of sensors, devices, simu-
lated users, environment geometry, etc. can be controlled and
changed dynamically.

Our test settings up to this point seems to justify the as-
sumption that our intuitive formulation of a globally optimal
ensemble behavior w.r.t. display mapping is heading in the right
direction. Now it makes sense to look at the actual aspect: un-
supervised spontaneous cooperation regarding joint approxima-
tion of this goal. Specifically, this goal-based approach now
allows us to evaluate different distributed ad-hoc cooperation
strategies w.r.t. their fidelity in approximating the global op-
timum. Currently we testing distributed versions of the well
known algorithms “local beam search”, “hill climbing” and
“simulated annealing”. We consider market-based strategies for
distributed cooperation as a promising approach.

5. Conclusion and Outlook
This paper describes how we can deal with the problems of
invisible computer and dynamic infrastructures if we rely on

p. 275

Joint sOc-EUSAI conference Grenoble, october 2005

Figure 5: Environment Simulation System

explicit goals to allow the smart ensemble to cooperate spon-
taneously on behalf of the user’s needs. To make goal based
interaction possible we need to have an explicit State Model of
the environment. This is the foundation for the formulation of
explicitly uttered goals by the user and for the formulation of
implicit persistent goals.

Currently, we are working on an unified environment on-
tology, which can be used to formulate both described kinds of
goals.

Goal function as Benchmark: As different software in-
frastructures emerge, criteria are required by which the potential
and efficiency of different solutions can be compared. Clearly,
user trials - the ubiquitous evaluation strategy for pervasive
computing applications - are not a viable approach in this case:
the users of system software are application designers. Doing
extensive user trial with highly trained experts is prohibitively
expensive.

Therefore, it seems desirable to identify comparison criteria
that can be evaluated at a formal level, using a standardized set
of example problems - a set of Benchmarks.

It may be interesting to use explicit definitions of optimal
behavior as a means for creating such benchmarks. So, as al-
ready outlined above, different approaches to computing dis-
play mapping could be compared with respect to their ability
to approximate qmax (or a more refined “theory of an optimal
display mapping”).

To summarize: Smart environments promise to enable
ubiquitous computing technology to provide a new level of as-
sistance and support to the user in his daily activities. An ever
growing proportion of the physical infrastructure of our every-
day life will consist of smart appliances. In our opinion, an
effective realization of smart environments therefore inherently
requires to address the challenge of unsupervised spontaneous
cooperation for ad-hoc ensembles of smart appliances.

We argue that a possible solution should be based on the
fundamental concept of goal based interaction, because this en-
ables an ad-hoc ensemble to generate strategies, instead to be
dependent on predefined or learned strategies.

6. References
[1] M. Weiser. The computer for the 21st century. Scientific

American, 3(265):94–104, 1991.

[2] E. Aarts. Ambient intelligence: A multimedia perspective.
IEEE Multimedia, 11(1):12–19, 2004.

[3] D.A. Norman. The Invisible Computer. MIT Press, 1998.

[4] The Disappearing Computer Initiative. IST- Workpro-
gramme 2003-2004-FET.

[5] T. Heider and T. Kirste. Architecture Considerations for

Interoperable Multi-modal Assistent Systems. In Inter-
national Workshop on Design, Specification, and Verifica-
tion, pages 571–575, Rostock, Germany, 2002.

[6] B. Brummitt, B. Meyers, J. Krumm, A. Kern, and
S. Shafer. Technologies for Intelligent Environments.
In Proc. Handheld and Ubiquitous Computing., Springer,
2000.

[7] D. Cook, M. Huber, K. Gopalratnam, and M. Youngblood.
Learning to Control a Smart Home Environment. In Inno-
vative Applications of Artificial Intelligence, 2003.

[8] T. Herfet, T. Kirste, and M. Schnaider. EMBASSI: multi-
modal assistance for infotainment and service infrastruc-
tures. Computers & Graphics, 25(4):581–592, 2001.

[9] M. Fox and D. Long. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. Technical
report, University of Durham, UK, October 2001.

[10] T. Heider and T. Kirste. Supporting goal-based interaction
with dynamic intelligent environments. In Proceedings of
the 15th European Conference on Artificial Intelligence,
pages 596–600, Lyon, France, July 2002.

[11] C. Pinhanez. The Everywhere Displays Projector: A De-
vice to Create Ubiquitous Graphical Interfaces. In Proc.
of Ubiquitous Computing 2001 (Ubicomp’01), Atlanta,
USA, September 2001.

p. 276

