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Abstract. We perform continuous activity recognition us-
ing only two wrist-worn sensors - a 3-axis accelerometer and
a microphone. We build on the intuitive notion that two very
different sensors are unlikely to agree in classification of a false
activity. By comparing imperfect, jumping window classifica-
tions from each of these sensors, we are able discern activ-
ities of interest from null or uninteresting activities. Where
one sensor alone is unable to perform such partitioning, using
comparison we are able to report good overall system perfor-
mance of up to 70% accuracy. In presenting these results, we
attempt to give a more-in depth visualization of the errors
than can be gathered from confusion matrices alone.

1 Introduction

Hand actions play a crucial role in most human activities. As
a consequence, detecting and recognising such activities is an
important aspect of context recognition. It is also one of the
most difficult. This is particularly true for continuous recog-
nition where a set of relevant hand motions (gestures) need
to be spotted in a data stream. The difficulties of such recog-
nition stem from two things. First, due to a large number
of degrees of freedom, hand motions tend to be very diverse.
The same activity might be performed in many different ways
even by a single person. Second, in terms of motion, hands are
the most active body parts. We move our hands continuously,
mostly in an unstructured way, even when not doing anything
particular with them. In fact in most situations such unstruc-
tured motions by far outnumber gestures that are relevant
for context recognition. This means that a continuous gesture
spotting applications has to deal with a zero, or NULL, class
that is difficult to model while taking up most of the signal.

1.1 Paper Contributions

Our group has invested a considerable amount of work into
hand gesture spotting. To date this work has focused on using
several sensors distributed over the user’s body with the aim
of maximising recognition performance. This included mo-
tion sensors (3 axis accelerometer, 3 axis gyroscopes and 3
axis magnetic sensors) on the upper and lower arm [5], mi-
crophone/accelerometer combination on the upper and lower
arm [7] as well as, more recently, a combination of several
motion sensors and ultrasonic location devices [10].
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This paper investigates the performance of a gesture spot-
ting system based on a single, wrist mounted device. The idea
behind the work is that wrist mounted accessories are broadly
accepted and worn by most people on daily basis. In contrast,
systems that require the user to put on several sensors at lo-
cations such as the upper arm may have problems with user
acceptance.

The downside of this approach is the reduced amount of in-
formation available for the recognition. This means, for exam-
ple, that the method of analysing sound intensity differences
between microphones on different parts of the body, which
was the cornerstone of our previous signal partitioning work,
is not feasible. It is also important that the devices used have
small form factor and thus do not require too much computing
power so as to keep battery size small.

The main contribution of the paper is to show that, for a
certain subset of hand based activities - the use of tools in a
woodwork assembly scenario -, reasonable gesture spotting re-
sults can be achieved using only a combination of microphone
and 3 axis accelerometer mounted on the wrist.

The method relies on simple jumping window sound pro-
cessing algorithms that have been shown [15] to require only
minimal computational and communication performance.

For the acceleration, inference on Hidden Markov Models
(HMM) is used, again on jumping windows across the data.
The results from the two classifiers (sound and acceleration)
are then combined to produce a final output. The aim is to
show that although individual sensor classifiers have no way
of separating valid activities from NULL, their combination
provides a means of doing so.

This approach is verified using data which was gathered
from an extended, multi-subject, run of the wood workshop
assembly experiment first introduced in [7]. The results are
presented using both traditional confusion matrices, plus a
novel visualisation method that provides a more in-depth un-
derstanding of the error types.

1.2 Related Work

Most of the existing work on gesture recognition involves the
use of computer vision [17, 19, 20, 14]. Regarding non-visual
sensors, previous setups and algorithms have proved success-
full either for segmented recognition, or for scenarios where
the NULL class was easy to model or not relevant (e.g. recog-
nition of standing, sitting, walking, running [8, 13, 18] using
acceleration sensors.) In the work of [11, 2] sound was ex-
ploited for performing situation analysis. Sound was also used



in [1] to improve the performance of hearing aids. Complimen-
tary information from sound and acceleration has been used
before to detect defects in material surfaces [21], but no work,
of which the authors are aware, use these for recognition of
complex activities.

2 Experiment

The dataset was gathered from experiments based on a mock
assembly scenario involving the use of hand held and hand
operated tools and machines in a wood workshop. This setup
was previously used for our earlier study on activity recogni-
tion, and was chosen as a suitable testbench for the continuing
work into the development of wearable computers for mainte-
nance and assembly applications 3. Though obtained from a
fairly constrained environment, the diverse selection of hand
and tool activities provides a useful dataset for evaluating ac-
tivity recognition techniques. Gestures involving hand inter-
action with tools generally have both a characteristic motion
and a corresponding sound component, from which recogni-
tion using these two different sensing modalities is particularly
suited.

Figure 1 shows the environment and tools used. The 9 activ-
ities which we set out to spot were: hammering, sawing, filing,
using a machine drill, sanding, using a machine grinder, screw-
driving, opening and closing a vise, and opening and closing
a drawer. All other activities and movements were labelled as
NULL.

Specifically, the assembly sequence consisted of sawing a
piece of wood, drilling a hole in it, grinding a piece of metal,
attaching it to the piece of wood with a screw, hammering in
a nail to connect the two pieces of wood, and then finishing
the product by smoothing away rough edges with a file and a
piece of sandpaper. The wood was fixed in the vise for sawing,
filing, and smoothing (and removed whenever necessary). The
test subject moved between areas in the workshop between
steps. Also, whenever a tool or an object (nail screw, wood)
was required, it was retrieved from its drawer in the cabinet
and returned after use.

The first dataset, as reported in the earlier study, in-
volved only a single subject performing this sequence. The
experiment has since been revised to include more subjects
(1 female and 4 male), with each subject repeating the se-
quence between 3 and 6 times, thus producing a total dataset
of (3+3+4+4+6)=20 recordings. (Some subjects performed
more repetitions than others due to a combination of tech-
nical problems in recording and availability.) Each sequence
lasted on average five minutes, bringing the total dataset size
to 6014 seconds.

The data was collected using a Sony microphone and a 3-
axis accelerometer (from the ETH PadNET sensor network
[6]). These were strapped to each subject’s right wrist - in the
current set, all subjects are right handed. (Readings were also
taken from each subject’s upper arm, though this data is not
used here.)

3 The development of such systems is the aim of the European
Union WearIT@Work project in which our group participates.

Figure 1. The wood workshop with (1) grinder, (2) drill, (3)
file and saw, (4) vise, and (5) cabinet with drawers

3 Recognition Method

We apply jumping windows of length wlen seconds across all
the data in increments of wjmp. At each step we apply an
LDA based classification on the sound data, and an HMM
classification on the sound. The ’soft’ results of each classifi-
cation - LDA distances for sound and HMM class likelihoods
for acceleration - are converted into class rankings, and these
are fused together using one of two methods: comparison of
top rank (COMP), and a method using Logistic Regression
(LR).

3.1 Frame by Frame Sound Classification
Using LDA

Frame-by-frame sound classification was carried out using
pattern matching of features extracted in the frequency do-
main. Each frame represents a window on 100ms of raw audio
data. These windows are then jumped over the entire dataset
in 25ms increments, producing a 40Hz output.

The audio stream was taken at a sample rate of 2kHz from
the wrist worn microphone. From this a Fast Fourier Trans-
form (FFT) was carried out on each 100ms window, generat-
ing a 100 bin output vector (1/2∗fs∗fftwnd = 1/2∗2∗100 =
100bins).

Making use of the fact that our recognition problem re-
quires a small finite number of classes, we applied Linear Dis-
criminant Analysis (LDA)[3] to reduce the dimensionality of
these FFT vectors from 100 to #Classes − 1.

Classification of each frame can then be carried out using
a simple Euclidean minimum distance calculation. Whenever
we wish to make a decision, we simply calculate the incoming
point in LDA space and find its nearest class mean value from
the training dataset. This saving in computation complexity
by dimensionality reduction comes at the comparatively mi-
nor cost of requiring us to compute and store a set of LDA
class mean values from which the LDA distances might be
obtained.

Equally, a nearest neighbour approach might be used. For
the experiment described here however, Euclidean distance
was found to be sufficient.



A larger window, wlen, was moved over the data in wjmp

second increments. This relatively large window was chosen
to reflect the fact that all of the activities we are interested in
occur at the timescale of at least several seconds. On each win-
dow we compute a sum of the constituent LDA distances for
each class. From these total distances, we then rank each class
according to minimum distance. Classification of the window
is then simply a matter of choosing the top ranking class.

3.2 HMM Acceleration Classification

In contrast to the approach used for sound recognition, we
employed model based classification, specifically the Hidden
Markov Model (HMM), for classifying accelerometer data[12,
16]. (The implementation of the HMM learning and inference
routines for this experiment was provided courtesy of Kevin
P. Murphy’s HMM Toolbox for matlab [9].)

The features used to feed the HMM models were calculated
from jumping 100ms windows on the x,y, and z axis of the
100Hz sampled acceleration data. These windows were moved
over the data in 25ms increments, producing the following
features, output at 40Hz:

• Mean of x-axis
• Variance of x-axis
• A count of the number of peaks (for x,y,z)
• Mean amplitude of the peaks (for x,y,z)

Finally we globally standardised the features so as to avoid
numerical complications with the model learning algorithms
in matlab.

In previous work we employed single Gaussian observation
models, but this was found to be inadequate for some classes
unless a large number of states were used. Intuitively, the
descriptive power of a mixture of Gaussian is much closer
to ’reality’ than only one, and so for these classes a mixture
model was used. The specific number of mixtures and the
number of hidden states used were individually tailored by
hand for each class. The parameters were obtained from the
data using leave-one-out training.

A window of wlen, in wjmp increments, was run over the
acceleration features, and the corresponding log likelihood for
each HMM class model calculated.

Classification is carried out for each window by choosing
the class which produces the largest log likelihood given the
stream of feature data from the test set.

3.3 Fusion of classifiers

Comparison of top choices (COMP) The top rankings
from each of the sound and acceleration classifiers for a given
jumping window segment are taken, compared, and returned
as valid if they agree. Those where both classifiers disagree
are thrown out - classified as null.

Logistic regression (LR) The main problem with a di-
rect comparison of top classifier rankings is that it fails to
take into account cases where one classifier might be more
reliable than another at recognising particular classes. If one
classifier reliably detects a class, but the other classifier fails
to, perhaps relegating the class to second or third rank, then a
basic comparison would just assign null. For such cases, then

a ’softer’ method of classifier fusion is needed - one that takes
into account the different rankings of each classifier.

In the work of Ho et. al. [4], three methods for classifier
fusion based on class rankings are presented and evaluated:
Highest Rank, whereby each class is assigned a rank according
to the highest rank assigned to it by any of the classifiers;
Borda count, whereby each class is ranked according to the
total number of classes ranking below it by each classifier;
and Logistic Regression (LR), a method based on the Borda
count, but which estimates weights for each class combination
using regression.

Of the methods presented, only one of them, the Logistic
Regression (LR) makes sense to apply here, as it is the only
one which provides the scope to deal with assigning results to
null.

The basic motivation behind LR is to assign a score for
each class and every combination of classifier rankings. How-
ever, such a scoring would soon become computationally pro-
hibitive, even for a moderate number of classes and classi-
fiers. Instead, LR makes use of a linear function to estimate
the likelihood of whether a class is correct or not for a given
set of rankings. Such a regression function, estimating a bi-
nary outcome with P (true|X, class) or P (false|X, class), is
far simpler to compute. So for each class a function is com-
puted: L(X) = α +

∑m

i=1
βixi where X = [x1, x2, ..xm] are

the rankings of the class for each of the m classifiers, and α, β
the logistic regression coefficients. These coefficients are com-
puted by applying a suitable regression fit using the correctly
classified ranking combinations from the training data. Again
the training is performed on a leave-one-out basis.

So that unlikely combinations are assigned to null, we intro-
duce an empirically obtained threshold on L(x) for each class.
Of the classes which fall below this threshold, the most likely
L(x) value is taken and re-assigned to the ’null class’. This
means that if all classes fall below their threshold for a given
ranking combination, then the null will take top ranking.

Classification can then be carried out by estimating L(X)
for each class on the input rankings, comparing with the null
threshold, and then ranking the values obtained. The final
classification result can then be taken from the highest rank.

4 Results

The system was initially evaluated across sweeps of the two
main parameters, window length wlen and window jump
length wjmp. From these sweeps, setting both wlen and wjmp

to 2 seconds was found to produce favourable results. All fur-
ther analysis was carried out with these parameters set.

Both the LDA and HMM methods require training of pa-
rameters using data. This was carried out in a user-dependent,
leave-one-out fashion. This is where, for each user, one set is
put aside for testing while the remaining sets (from the same
user) are used for training.

We applied HMM classification to the accelerometer data,
and LDA minimum distance to the audio. This was applied
to all 20 sets of data. Typical results from one of these sets is
plotted in Figures 2, with class predictions compared along-
side the hand-labelled ground truth.

With each of the 2 second segments, we performed firstly
the classification comparison fusion, and then the logistic re-
gression using the rankings obtained from the HMM likeli-
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Figure 2. Plot of a typical classifier output sequence showing
the ground truth, the sound predictions, and acceleration

predictions (1 output sample every 2 seconds)
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Figure 3. Plot of output sequences of sound and acceleration
predictions combined using Comparison method, and LR, versus

ground truth

hood and LDA distance information.
On first run, the LR method continued to produce a large

number of insertions - primarily from the class ’screwdriving’.
This was due to the fact that this is comparatively silent class,
and as the training data consisted mostly of noisy, positive
class examples (at no stage do we use NULL labelled data
for training), it winds up being a ’catch all’ class for non-
activities which should have been assigned NULL. Reducing
the weights of the ranking combinations for this class during
training helps to alleviate this problem.

The final predictions from each of these, compared along-
side the ground truth, are shown in 3.

Lacking any ability to distinguish valid activities from
NULL, the constituent classifiers, as expected, produce much
noise. With LDA tending to misclassify NULL as a quiet class,
such as screwdriving; and HMM generally giving random mis-
classifications. Both perform relatively well when set against
known system classes however, and this is reflected in the
performance of both the comparison and LR predictions.

Plotting predictions might allow us to gain a rough under-
standing of how well the system performs for a given set, but
for a measure across all the data we require a more quanti-
tative means. For this we perform a direct frame by frame

comparison of the predictions with the ground truth, and fill
out a confusion matrix of the results. We sum the matrices
across all test datasets and present the total matrix, for each
recognition method, in Tables 1. Class by class recognition
rates, stating how well the system returns true frames are
given to the right of these tables. Also shown is a summary
of the False Positive (FP), False negative (FN), Substitution,
Correct True Positive (cTP) and the overall Accuracy as per-
centages of the total experiment time. (Substitution being
defined as the misclassification of one positive, non-NULL,
class for another; and cTP as the correctly classified positive
class.) This summary information is also shown, in barchart
form, in Figure 4.

Continuous recognition systems which deal with human ac-
tivity are often characterised by the lack of fixed, well-defined
activity boundaries. In many cases, whether an activity was
recognised exactly within the labelled time frame, or slightly
off from it, is less important than the fact that the activity
was detected correctly in the first place. The confusion matrix
based evaluation as given does not account for such ’fuzzy’
boundaries, and makes a strict judgement on the predicted
frames according to the given ground truth.

If we lighten this restriction, we can create two additional
error classifications, which we call overfill and underfill, as
defined:

• Overfill time: when a continuous sequence of correct predic-
tion frames slips over the ground truth boundary to cover
NULL labelled frames (previously classed as insertion time)

• Underfill time: the time left when a continuous sequence
of correct prediction frames does not completely cover the
corresponding ground truth (previously classed as deletion
time)

Taking account of this, the total overfill and underfill, to-
gether with substitution, deletion, insertion, correct positive
and correct negatives times as a percentage of the overall ex-
periment, are shown in Figure 5. To mark the level of true
insertion, deletion and substitution errors, we introduce a ’se-
rious error’ measure, as shown on the charts.

5 Discusion

As expected, the individual recognition performance for each
of the two sensor types performed quite poorly on their own,
but once combined the results improved dramatically.

As a percentage of the entire time, substitution errors de-
creased from a maximum of 9.3% by HMM on acceleration
to as low as 0.6% in the basic Comparison method (and a
respectable 2.3% for LR).

The amount of false positives as a percentage of total time
fell to 14.9% for the Comparison method. LR, which although
having more (25.7%) false positives, is, however, the better
choice for fewer false negatives (6% LR, versus 14.4% for Com-
parison).

When underfill and overfill are considered, these results be-
gin to take on new meaning, as the more serious errors of
insertions and deletions prove to occur far less than the count
of false positives and false negatives might suggest. As a per-
centage of the total time, the sum of insertion, deletion and
substitution errors is only around 7% for the Comparison and
9% for LR methods.



Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 183.6 2.5 3.6 0.6 2.4 3.0 93.84

saw 306.4 3.7 209.9 69.7 3.9 4.0 15.2 0.1 68.50
file 304.6 0.6 40.3 248.3 1.9 8.0 0.3 4.9 0.2 81.52
drill 241.5 0.9 184.0 50.6 2.0 4.0 76.20
sand 313.0 0.7 3.3 40.5 6.3 228.2 2.7 29.6 1.8 72.91
grind 277.7 15.1 260.6 2.0 93.85

screwdr. 260.4 19.3 2.0 2.0 229.7 7.3 88.23
vise 678.1 65.2 28.5 0.4 11.4 4.6 543.4 24.6 80.14

drawer 658.8 8.2 30.3 10.9 7.4 12.0 590.1 89.57
NULL 2777.5 185.9 12.5 13.5 471.5 1.8 304.9 77.2 296.3 1413.9 0

Accel. Total: 6013.7 FN: 0.0 FP: 2777.5 Subst.: 558.2 cTP: 2678.0 cTP+TN: 2678.0
0.0% 46.2% 9.3% 44.5% Accuracy: 44.5%

Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 168.5 19.6 6.7 0.8 86.12

saw 306.4 267.2 14.0 2.0 10.5 12.7 87.21
file 304.6 238.8 34.4 1 16.1 2.5 2.8 78.40
drill 241.5 226.5 12.0 2.0 1.0 93.79
sand. 313.0 6.0 13.9 258.0 2.0 21.7 0.9 10.5 82.42
grind. 277.7 2.9 274.5 0.3 98.86

screwdr. 260.4 249.0 9.8 1.6 95.64
vise 678.1 0.3 101.8 571.2 4.8 84.24

drawer 658.8 0.7 163.6 22.7 471.8 71.61
NULL 2777.5 5.5 8.8 7.3 111.5 18.0 67.5 1360.8 506.4 691.7 0

Sound Total: 6013.7 FN: 0.0 FP: 2777.5 Subst.: 510.6 cTP: 2725.6 cTP+TN: 2725.6
0.0% 46.2% 8.5% 45.3% Accuracy: 45.3%

Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 168.5 0.6 1.3 0.8 24.5 86.12

saw 306.4 200.3 12.0 5.0 89.1 65.38
file 304.6 203.3 2.0 0.3 99.1 66.73
drill 241.5 169.0 72.5 69.99
sand. 313.0 194.6 1.1 0.9 116.4 62.16
grind. 277.7 259.5 18.2 93.45

screwdr. 260.4 225.7 34.6 86.70
vise 678.1 1.7 476.2 1.0 199.2 70.23

drawer 658.8 5.4 2.1 440 211.3 66.79
NULL 2777.5 3.5 1.7 2.7 83.0 1.4 50.5 67.2 126.1 562.2 1879.2 67.66

Comp. Total: 6013.7 FN: 864.9 FP: 898.3 Subst.: 34.1 cTP: 2337.1 cTP+TN: 4216.4
14.4% 14.9% 0.6% 38.9% Accuracy: 70.1%

Class Total(s) hammer saw file drill sand grind screwdr. vise drawer NULL %Correct
hammer 195.7 169.5 0.6 4.1 2.2 19.4 86.61

saw 306.4 254.3 22.0 9.4 0.1 20.6 83.00
file 304.6 4.0 262.2 12.0 0.3 3.1 0.2 22.9 86.07
drill 241.5 232.3 4.2 5.0 96.19
sand. 313.0 8.0 22.8 237.6 1.1 8.8 1.1 33.7 75.89
grind. 277.7 275.6 2.1 99.26

screwdr. 260.4 225.7 2.8 31.8 86.70
vise 678.1 0.3 1.7 566.7 17.7 91.7 83.58

drawer 658.8 5.4 8.1 508.5 136.8 77.19
NULL 2777.5 10.5 9.7 7.1 121.7 2.4 76.2 67.2 282.8 969.4 1230.6 44.30

LR Total: 6013.7 FN: 363.8 FP: 1546.9 Subst.: 139.9 cTP: 2732.5 cTP+TN: 3963.1
6.0% 25.7% 2.3% 45.4% Accuracy: 65.9%

Table 1. Confusion matrices for the acceleration and sound classifications, and the comparison (Comp.) and logistic regression (LR)
combinations, with jumping window of 2 seconds. The total % Correct is a summation of the class correct times over the total time. All

times are given in seconds. At the bottom of each matrix, a summary table gives times and percentages of false negative (FN), false
positive (FP), substitution (Subst.), correct true positive (cTP), and overall correct (cTP+cTN), corresponding to the information in

Figure 4.
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As with any comparison between recognition systems, it is
unwise to make claims as to the absolute superiority of one
method over the other - the differences between basic Com-
parison and LR should be highlighted in view of whatever
performance criteria is most important to the application.
Some applications, safety monitoring of dangerous activities
for example, might regard a false negative error as being much
worse than a false positive. In which case the LR method as
given might be regarded preferable.

Additionally, the parameters which have for the purposes
of this paper been set to some ’optimal’ value, such as the
NULL thresholds on L(x) for LR, can alter the nature of these
results by raising or lowering the chance of returning a NULL.
It is, for example, possible to tailor the LR method to have
exactly the same performance as Comparison if one raises
the threshold to just under the L(x) value for matching top
rank classifier results. This ability means that although more
complex to implement, the LR is more versatile in terms of
performance optimisation than the basic comparison.

The purpose of this paper, however, is not to analyse the
peculiarities of each method in depth (one might use ROC
curves for this purpose), but rather to evaluate the feasibility
of their useage in discerning useful activities from NULL in a
recognition task where two different sensor modalities, neither
of which can perform this task alone, are used.

5.1 Conclusion

Using only a single wrist worn unit containing two sensors -
a microphone and a 3-axis accelerometer - it is possible to
perform gesture spotting for a certain subset of activities.
Recognition of activities is carried out for each sensor using
standard jumping window based approaches. Alone, neither
sensor can detect a NULL gesture, but when fused together,
this becomes possible.

It has been shown that this setup is particularly suited
to recognising assembly-type activities, involving use of hand
manipulated machines and tools. Clearly, sound-acceleration
combination might not be useful for gestures which produce
little or no sound, such as in sign language. However, in ap-
plications involving the use of hand-held objects which pro-
duce both motion and corresponding sound components these
methods are feasible.

In evaluating recognition performance, we introduce the
terms ’underfill’ and ’overfill’ to describe those common cases
in continuous recognition where events fail to completely
match the ground truth - but which might actually be judged
correct by a human observer - and show how these can be
used to visualise results. By discounting overfill and under-
fill errors, the lowest error rates for the described system fall
from around 30% to 7.2%.

A remaining issue, which is left here for future work, is the
influence of background noise on the sound recognition. It is
the belief of the authors that although this might be a limiting
factor, the careful selection and placement of microphones
should help mitigate the effects - especially for recognition of
dominant, loud activities such as hammering, or sawing.
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