
Joint sOc-EUSAI conference Grenoble, october 2005

Universal Programming Interfaces for Robotic Devices

Jean-Christophe Baillie

Ecole Nationale Supérieure de Techniques Avancées
(ENSTA)

Laboratory of Electrical and Computer Engineering
32, Bd. Victor 75015 Paris, France

jean-christophe.baillie@ensta.fr

Abstract
Robotic devices, whether service robots designed to help
people or entertainment robots, are more and more
widespread, and their number is increasing. All these robots
currently have a different programming interface, more or less
complex and more or less powerful. The situation is reminding
of the 80's and the personal computer revolution: many
vendors, models and as many programming languages and
interfaces. We have developed URBI, a Universal Robotic
Body Interface in an attempt to address this issue and provide
a standard and simple way to control robots, while still
providing powerful high-level capabilities expected from a
modern programming language. To achieve this, URBI is
based on a client/server architecture where the server is
running on the robot and accessed by the client, typically via
TCP/IP. The client can be any system, thus giving a great deal
of flexibility. The URBI language is a high level scripted
interface language used by the client and capable of
controlling the joints of the robot or accessing its sensors,
camera, speakers or any accessible part of the machine. We
present in this article a short introduction to URBI and show
application examples with Aibo. We finally explore how
URBI could impact the development of everyday robotics and
facilitate the interaction between robots, computers and smart
objects in general.

1. Introduction
Robotic devices, whether service robots designed to help
people or entertainment robots, are more and more
widespread, more and more complex and their number is
increasing, opening doors to what is already called “everyday
robotics” [8]. In this paper, we will discuss the question of
how to interact with these robots, from a programmer
standpoint. We will mainly focus on entertainment robots,
which often present the most complex interfaces and
capabilities.

The various robots that have been recently created (Aibo,
QRIO, Asimo, HRP2…) currently have a different
programming interface, more or less complex and more or
less powerful. One well known example is the Aibo robot and
the Sony OPEN-R SDK [4]. This general situation is
reminding of the 80's and the personal computer revolution:
many vendors, models and as many programming languages
and interfaces. These new robotic devices share another trait

with the early computers of the 80’s: they offer an important
potential for applications and they trigger people’s
imagination. One of the key issues to develop this potential is
the possibility to program the robots in a simple and standard
way, which, to a certain extent, should not depend on the
robot type. The programming language, or interface, should
be adapted to robotics and not a simple extension of classical
computer programming, and it should be easy enough so that
any hobbyist with a basic background in computer science
could start programming its own robot, and not only IT
professionals. But more advanced features should also be
available for more demanding applications. This could open
doors in terms of markets for education and entertainment as
well as industrial applications.

With these constraints in mind, we have developed URBI,
a Universal Robotic Body Interface, in an attempt to provide
a standard and simple way to control any robots on a low
level scale, while still providing powerful high-level
capabilities expected from a modern programming language
[1], [2], [3].

URBI is based on a client/server architecture where the
server is running on the robot and accessed by the client,
typically via TCP/IP. The client can be a Linux PC, a robot, a
Mac or any kind of computer, thus giving a great deal of
flexibility. The URBI language is a high level scripted
interface language used by the client and capable of
controlling the joints of the robot or accessing its sensors,
camera, speakers or any accessible part of the machine. We
present in this article some views on robot interaction and a
short introduction to URBI with application examples for the
Aibo robot. We finally explore how URBI could impact the
development of everyday robotics and facilitate the
interaction between robots, computers and smart objects in
general.

2. Interacting with robots
There are many ways to interact with a robot. We will focus
on the basic programmer’s point of view, which is: how to
make the robot do things? We can see this question from two
opposite perspectives:

The most natural way of having the robot do things is to
speak and tell it or teach it, in the same way we would do
with humans or, more simply, with a animal like a dog. In this
perspective, we don’t actually program the robot; we educate
it or talk it into doing things. We could call this “natural

p. XYZ

mailto:jean-christophe.baillie@ensta.fr

Joint sOc-EUSAI conference Grenoble, october 2005

programming”. The result is not necessarily accurate or
dependable but the flexibility is important. This is the aim of
several ongoing research activities in cognitive robotics (see
[6], [7] for example) and is still a far goal to reach.

On the other hand, the most “unnatural” but also precise
and accurate way is to have the robot controlled by a
program. We can use complex interaction protocols
(CORBA, GENOM…) and high level languages (C++, java,
python…) to give specific instructions to the robot hardware
and the robot will do exactly what it is told. Of course, it is
necessary to know how to explicitly state the task
requirements step by step, or design a converging dynamic
system to do so, which is most of the time an open research
topic. More importantly, the skills necessary to master the
programming tools, like CORBA for example, or OPEN-R,
can be important and will most of the time confuse non-
professional users. Even for professional programmers, the
task is usually time consuming and error prone.

URBI could play a role as an intermediary solution,
simple enough to be understandable and usable by non-
specialists, while being still powerful and extensible with all
the benefits of a modern programming language. Also, since
it has been designed with robotic applications in mind, it is
more directly suitable for this type of programming,
providing useful features and extensions. It can make things
easier and could be perceived as being closer to the idea of
“natural programming” than C++, for example.

Other programming interfaces, like Tekkotsu [9] or
Player/Stage [10], have been compared to URBI in [1]. They
differ mainly in terms of expressivity, scope and ease of use.
Also, none of them offers a dedicated robotic oriented
language: they are libraries on top of previously existing
languages, which has clear advantages but also limitations.
Many features trivially available with URBI would require a
lot of programming with these other approaches. On the other
hand, they provide some high level functions that are not
natively available in URBI.

To have an idea of the URBI language, we will now
describe some of its key features and show examples.

3. URBI Architecture
URBI is based on a client/server architecture. A URBI server
is running on the robot and a client is sending commands to
the server in order to interact with the robot. The
communication channel between the client and the server can
be a TCP/IP connection or direct Inter Process
Communication (IPC) if the client and the server are both
running on the robot.

The robot is described by its devices. Each element of the
robot that can be controlled or each sensor is a device and has
a device name. From a programmer's point of view, a device
is an object, with methods and variables. Everything that can
be done on the robot is done via the devices and the available
methods and variables associated to them.

The main advantage of using the client/server architecture
is the flexibility it allows. The client can be a simple telnet
client or a complex program sending commands over TCP/IP.
This client can run on Linux, Windows or Mac OSX and it
can be programmed in C++, java, python or any language
capable of handling TCP sockets (currently, C++, Java and
Matlab libraries are available).

For each new robot type, a new server has to be written,
but this is done once. Once this server is running on the robot,
it is straightforward to command the robot for any user,
whatever the robot is or how complex it is, as soon as one
knows the list of devices and their associated methods. This
list is supposed to be made available in the documentation of
the robot and it is the only robot-specific piece of information
required to know how to control a previously unknown robot.

The syntax used to access the devices is designed with
simplicity in mind. More complex features of the URBI
language are available but understanding them remains easy
and it is an incremental process: it is not necessary to
understand the complex features to use the robot at a basic
level, which was one of the requested properties listed in the
introduction, making URBI suitable for specialists and
hobbyists as well.

A detailed study of the performances of URBI can be
found in [1] and shows that the client/server architecture
using a wireless 802.11G connection is fast enough for real-
time reactivity and demanding applications. URBI on Aibo
can handle up to 600 motor commands per seconds, with a
1.5ms latency and delivers images at 30fps. The reactivity
time is even higher (600µs) when the client is directly
embedded in the robot, using IPC communication.

4. URBI language
The working cycle of URBI is to send commands from the
clients to the server and to receive messages from the server
to the clients.

Commands can be written directly in a telnet client on
port 54000, where the messages will also be displayed, or
interfaced in a program including the URBI library (see
liburbi on www.urbiforge.com).

4.1. Getting and setting a device value

As we said in the architecture description, each element of the
robot is called a device and has a device name. For example,
in the case of Aibo, here is a short list of devices: legFL1,
neck, camera, speaker, micro, headsensor,
accelX, pawLF, ledF12... To read the value of a device,
the val field is available:

> neck.val;
[036901543:notag] 15.1030265089

The message returned (second line) is composed of a first

part between brackets displaying a timestamp in milliseconds
(counted from the start of the robot) and a command tag. In
this case, the command tag is notag, since no tag has been
specified with the command. The tag can be specified before
a colon preceding the command. With a command tag, it is
possible to retrieve the associated message later, possibly in a
flow of other messages from the server:

> mytag: neck.val;
[041307845:mytag] 15.0040114317

This tagging feature is an essential part of URBI and the

URBI library, where callback functions can be associated to
any tag enabling asynchronous message handling.

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

The second part of the message is the response of the
server. In the case of our example, it gives the value of the
Aibo neck device val field, which is the position of the
neck motor in degrees. One important fact for standardization
is that the val field is available with any device. The type of
data returned depends on the device: for example, camera
devices return binary data (see [1] for more details on binary
transfers in URBI).

Symmetrically, the val field can also be used to set a
particular device value. If the device is a motor, it is going to
move to the specified value. In the case of a LED, this will
switch it to the corresponding illumination (between 0 and 1):

> motoron; // to activate the motors
> headPan.val = 15;ledF1.val = 0.6;

4.2. Modifiers

Modifiers are a particularity of URBI. The value specified by
a val field assignment command is normally reached as
quickly as the hardware of the robot allows it. It is however
possible to control the speed and many other movement
parameters using modifiers. The following example
commands the robot to reach the value 80 degrees for the
motor device headPan in 4500ms and the value 40 degrees
for headTilt with a speed of 12.5 degrees per seconds:

> headPan.val = 80 time:4500;
> headTilt.val = 40 speed:12.5;

The speed or time modifiers are always positive

numbers. It is possible to specify a speed without giving a
targeted final value by setting the desired value to infinity
(inf) or minus infinity (-inf). For example, in the case of a
wheeled robot with control in position, this command sets the
right wheel speed, in the "positive" direction:

> wheelR.val = inf speed:120;

Another interesting modifier is accel whose meaning is

to control the acceleration.
One of the most interesting modifier is sin, followed by

a time period and coupled with the ampli modifier, which
makes the assigned variable oscillate around the value with
the specified period and in a sinusoidal way with the given
amplitude. Additionally, the phase can be controlled by the
phase modifier:

> neck.val=45 sin:400 ampli:20 phase:pi/2;

This modifier can be used to design complex periodic

patterns by superimposing several sinusoidal profiles, as
explained in the “multiplexing” section below (4.5).

Modifiers are a unique and powerful feature of URBI
compared to other existing languages and which makes it a
fundamentally asynchronous and time-oriented language.
Variables are not only containers but can store dynamic
profiles evaluated in real-time. Besides, since modifiers are
constantly reevaluated online, it is also possible to create a
dynamics for the parameters themselves. This is useful in
many situations, like, for example, in the design of a walk
sequence for a legged robot with a variable speed expressed
as the period of the sin modifier.

4.3. Serial and parallel commands

One key feature of URBI which make it fundamentally
different from C++, Java and traditional procedural languages
is the ability to process commands in a serial or parallel way.
When two commands are separated by the “&” operator, they
will be executed in parallel. In addition, they will start at
exactly the same time:

> headPan.val = 15 & headTilt.val = 30;

This will move the head pan and tilt together, with both

motors starting at the same time. In the same way, it is
possible to serialize commands by separating them with a
pipe. In that case, the second command will start just after the
first one is finished, with no time gap.

> headPan.val = 15 | headTilt.val = 30;

This will move the head pan to 15 degrees and only when

this value has been reached, and just after, it will start to
move the headTilt motor.

Two commands separated by a semicolon have almost the
same time semantics as the serial “|”: the second will start
after the end of the first, but the time gap between the end of
the first and the beginning of the second is not specified. This
is close to the standard semantics of C or C++. Most of the
time URBI commands will be separated by semicolons.

Finally, two commands can be separated by a colon. In
that case, the time semantics is close to the parallel operator
"&", except that the two commands will not necessarily start
at the same time. The meaning of a colon terminated
command is simply to start the command as soon as possible.
In particular, as soon as the command is in the receiving
buffer of the server, it will be executed, whereas with "&", the
chain of commands must be integrally received before
execution. The following relationships represent those time
dependencies:

a;b : b.start >= a.end
a,b : b.start >= a.start
a&b : b.start == a.start
a|b : b.start == a.end

Technically speaking, the consequence of those different

operators is that commands are not stored in a pile in the
URBI internal structures, but in a tree. More details on the
practical implementation of the URBI kernel will be
published on www.urbiforge.com.

These time sequencing capabilities are very important
features to design and chain complex motor commands or
behaviors. They are particularly well suited for robotics
applications.

4.4. Loops, conditions, event catching

Several control structures are available, like the classical
"for", "while" and "if ... else". Some new control
structures like loop, which is equivalent to while
(true), or loopn (n) equivalent to for(i=0;
i<n;i++) are also provided for convenience. The syntax of
for, while and if is the same as in C. ”for &” is a
parallel implementation of ”for” which will start every

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

iteration at the same time. ”for |”, ”while |” and ”at
&” are also available.

As a specificity of URBI, event catching control
structures like whenever, at and wait are also available:

The instruction ”at (test) command” will execute
the command only once at the moment when the test becomes
true. The instruction "whenever (test) command" will
execute the command as long as the test is true. When the test
becomes false, the command is not restarted once it is
finished and the whenever instruction silently waits for the
test to become true again. The semantics is close to while,
except that the instruction never terminates: both "at" and
"whenever" are run in the background, they return but they
do not terminate.

The instruction "wait (test)" is blocking until the
test becomes true. Another usage of this instruction is "wait
(tps)", where tps is a number. In that case, the instruction
will do nothing but lasts during tps milliseconds.

4.5. Multiplexing

Another key feature of URBI, is its capability to perform
multiplexing of assignment commands, which can be seen as
a sort of integrated mutex facility. The URBI server running
on the robot is a multi client server, this means that it is
always possible that two contradictory commands are sent to
the server from two different client (or contradictory
commands can be executed in parallel from a single client).
For example, what should be done if one command requests
the neck device to be set to 20 degrees while the other one
requests a value of -30? Six strategies are available in URBI:

• [normal]: The last command received is

executed on top of others, but the others are still
running “silently” in the background (default)

• [discard]: The last command is ignored and
erased if there is already one command running
which is conflicting.

• [cancel]: The last command replaces any
previously existing command

• [queue]: Queue the commands and execute them
one after the other

• [mix]: Mix conflicting commands by averaging
the instantaneous values

• [add]: Mix conflicting commands by adding the
instantaneous values

For each URBI variable, those strategies can be selected

via the blend property. For example, the following code
calculates the average value of an array tab by setting the
receiving variable m to the mix mode and performing a
parallel affectation of all the array elements to m:

m->blend = mix;
for &(i=0;i<10;i++)

m = tab[i];

Of course, one of the main interests of the mix and add
modes is to aggregate several conflicting motor commands, as
we will see in the examples. In the case of a sound playing
device, setting the blending strategy to mix or add enables

the robot to play several sounds at the same time, instead of
queuing them.

4.6. Other language elements

Several other elements of the language are available, like the
capacity to group devices into virtual devices and propagate
commands along the device hierarchy, function definition,
binary types, flags, static variables, advanced event
processing and behavior definitions. We will not present
those elements here, but extensive details can be found in [1],
[2].

5. Code examples on Aibo
URBI, which is a command script language, is normally
supposed to be used together with a client program written in
a language like C++ or Java, which will handle all the image
processing and cognitive part of the robot behavior. However,
it is possible to write quite complex and useful programs fully
in URBI, without the use of an external client. A simple telnet
is enough, or an elaborated telnet version like urbilab (see
www.urbiforge.com).

To illustrate this point and some of the capabilities of the
language, we present here a set of simple examples in URBI,
performing interesting action/perception loops on Aibo
robots. It is interesting to compare the compactness and
simplicity of the URBI code to the equivalent code in
OPENR (see [4]), the Sony Aibo programming SDK. On
average, URBI programs are 100 times smaller than
equivalent OPENR programs.

5.1. Ball Tracking Head

The perception part in this example is limited to detecting a
red ball in the image. This is done in the Aibo version of the
URBI server via a soft device called ball, which is
constantly setting the variables ball.x and ball.y to the
ball position in the image (between 0 and 1), and -1 otherwise
(ball.size is also available). The “action” part of the
program is to follow the ball when the robot sees it, and
search for it with circular head movements otherwise:

whenever (ball.x != -1) {

headPan.val = headPan.val +
camera.xfov * (0.5 – ball.x) &

headTilt.val = headTilt.val +
camera.yfov * (0.5 – ball.y)

};

at & (ball.x == -1 ~ 500ms)

scan : {
headPan.val\n = 0.5 sin:4000 ampli:0.5
&
headTilt.val\n = 0.5 cos:4000 ampli:0.5

};

at (ball.x != -1) stop scan;

The val\n field is a normalized equivalent to val,

based on the device min and max range (accessible via the
rangemin and rangemax properties). xfov and yfov are
constants giving the ratio between pixels and angles in degree
for the Aibo camera. "Ball Tracking Head" is a typical
example given with the Sony OPEN-R SDK. The URBI
version is comparatively much simpler to understand and

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

requires only ten lines of code in URBI, compared to about
600 lines for the OPENR version. The performances are
comparable to the native OPENR version. The structure of the
program is easy to grasp by reading the code and we expect
URBI programs to be much easier to maintain than OPENR
versions.

5.2. Mirroring

This simple program mirrors the right-front leg (RF) to the
left-front leg (LF):

legRF.load = 0;
mirrortag: loop {

legLF1.val = legRF1.val &
legLF2.val = legRF2.val &
legLF3.val = legRF3.val

},

The load field is available for all motor devices and

controls how tensed the motors are. By setting it to zero, the
motor becomes loose. The loop command is constantly
doing the mirroring for the three joints of the Aibo leg and
can be stopped with stop mirrortag. It is a good
programming habit to prefix with a tag every non-terminating
command, like loop, in order to be able to stop them later.

5.3. Stand-up sequence

The following code is performing a simple sequence of leg
movements to have the robot stand up. This is a relatively
complex sequence to program in OPENR, but it is done very
simply here by using the serializing and parallelizing
capabilities of URBI, together with time modifiers:

{ leg2.val = 90 time:2000 &
 leg3.val = 0 time:2000 } |
leg1.val = 90 time:1000 |
leg2.val = 10 time:1000 |
{ leg1.val = -10 time:2000 &
 leg3.val = 90 time:2000 }

leg1, leg2 and leg3 are virtual devices grouping all

the level 1, 2 and 3 leg joints. See [1] or [3] for more details
on virtual devices and grouping.

5.4. Walk sequences and perturbation-based turning

Walk sequences are good examples of simple applications of
URBI for Aibo. The simplest way of doing a walk sequence
with URBI is to use basic sinusoidal movements on all joints
of the legs.

To go one step further, using the add blending mode, it is
possible to superimpose several sinusoidal motion profiles
and build any kind of motor trajectory by using the main
coefficients from the Fourier decomposition of the trajectory.

One interesting idea is to try to make use of the “add”
blending mode to generate a turning behavior while a walk is
performed, using only a perturbative approach. In this
approach, conflicting assignments are sent to the joints on top
of the running walk commands and, therefore, are added to
the current motion profile. This method is particularly suited
for ZMP-based walk control [11].

Since URBI is capable of handling a large amount of
motor commands per seconds (30 motor commands per motor

and per second), it is also possible to store a walk sequence
and replay it by sending the series of motor positions or,
simply, to calculate the series of motor positions using
reverse kinematics in a separate program (in C++, for
example) and send them to the robot. This illustrates some of
the flexibility of the URBI approach.

6. Possible role of URBI in the development of
everyday robotics

We have presented a short technical description of URBI. The
level of technical knowledge required to use URBI is not
comparable to “natural programming” but is comparatively
much lower than the level requested to use OPENR or
CORBA-based approaches.

Considering its specificities, we want to investigate what
role could URBI play in the development of everyday
robotics. What are the strong and weak points of the language
in that regard and what makes it fundamentally different from
already existing solutions?

6.1. URBI as a standard

If URBI succeeds in becoming a de facto standard in robot
programming, it will help making robotic applications easier
to develop and programs more portable. This could help to
create a momentum for the robotic software industry by
allowing companies to develop robot programs working with
a large variety of robotic hardware, without major
incompatibility issues or development time and costs. In fact
URBI as a standard is not limited to strict robotic applications
but could be used with a wide range of remotely controllable
devices, including smart objects in general.

However, it is clear that URBI alone is not sufficient to
develop demanding robot applications. It needs some fast and
compiled language to rely on for visual processing, sound
processing or complex AI programming. This is why URBI is
what we call an interface language. So, one important step
towards a standard is to create powerful bridges with fast
languages, like C++. This is currently done via the liburbi
library but the integration with URBI could be tighter.
Integration with python, which is already closely coupled to
C++, might be another option.

One of the main weak points of URBI at the moment in
the perspective of a standard development is its lack of
industrial support, since it is a recent creation. We expect that
the free distribution model of URBI will help to create a
community of users which could drive industrial interest and
support. Currently, we have URBI servers for Aibo, HRP-2,
Webots simulation environment, and a private company
companion robot. We plan to develop URBI servers for
pioneer robots and simulation tools like ODE.

6.2. URBI as an educational tool

Another important role to play for URBI is in the education
domain. The relative complexity of today’s object oriented
computer languages and GUI programming makes it difficult
for children to develop their own programs, as they did in the
80’s with the language “Basic” or “Logo” and the personal
computers. In general, programming is no more a hobby for
today’s children. One of the focuses of kids in the 80’s was in
game programming (impossible today with modern games),

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

competing with existing software and pushing the limits of
the machine. They were getting “fun” out of programming.
To some extent, the computer revolution has entered our
homes through this door and the everyday robotics revolution
might follow the same path: through entertaining and fun
robot programming, using a simple and universal language,
together with powerful and yet affordable robotic devices.

The benefit in terms of education is probably difficult to
evaluate but it is commonly accepted that programming
facilitates mathematical reasoning and logical thinking, and
develops creativity in a positive way. Numerous social studies
have already been conducted to study the impact of
technology on education [5].

6.3. Home shared computing

Finally, URBI could play a role as a standard interface
between computers and robots in general, including
entertainment robots but also more generic devices or smart
objects. The benefit of the URBI protocol of communication
is that it is simple and works with a standard TCP/IP
client/server model.

Another benefit of the client/server architecture of URBI
is to allow remote processing of some of the robot software
components in a straightforward manner. Distributed
computing is of course a well known domain, but the
application to robotics at home would be a relatively new
idea, what could be called “home shared computing”: when
the robot needs more computing power, it scans the
surrounding local wifi network for personal computers which
are running a CPU-sharing application, and uses these
computers if needed. The key point is that it is very likely that
such a secondary computer will be available in today’s home
environment, especially for the kind of people willing to have
a robot at home. From this perspective, the limitations of
onboard CPU power could be overlooked to a certain extent
in the application development and URBI could provide the
glue required to assemble this extra CPU power available and
coordinate the different modules.

7. Conclusion
We have presented URBI as a candidate for a medium
solution between “natural programming” and complex high-
end programming. We have given a short description of the
language itself and examples to illustrate its capabilities. The
five key features of URBI which make it different from
existing solutions are: integrated parallel/serial command
processing, multiplexing of conflicting commands, complex
assignments via modifiers, integrated event-based
programming, and tagged commands. The client/server
architecture adds flexibility to the approach.

Obviously, nothing of what is done with URBI could not
be done with other approaches but we claim that it can be
done more quickly and more efficiently with URBI, and in a
portable and simple way. In this context, one of the interests
of URBI is to become a potential standard for robotics
control. However, even if satisfying solutions already exist
(liburbi), there is still work to be done to integrate URBI
more tightly with existing compiled languages necessary for
heavy algorithmic computation.

According to the first user feedback that we have, URBI
is indeed reported as simple to learn and simple to use,

especially if compared to existing solutions like OPEN-R.
This simplicity makes it also a good candidate for an
educational tool. The programs that we have presented here
are just a few lines long and are easy to maintain, whereas
this would certainly require a more important effort to
develop with SDKs like OPEN-R, obviously incompatible
with short term educational goals.

URBI is a low level language but includes scripting and
procedural features that makes it extendable. It is still in an
early stage of development but is already used on a daily
basis in our lab, and other labs working with Aibo have
started to use it. We hope that URBI will be a useful element
in the development of the field of robotics.

References
[1] J.C. Baillie. Urbi: Towards a Universal Robotic Body

Interface. in Proceedings of the 4th International
Conference on Humanoids Robotics, 2004.

[2] J.C. Baillie. URBI: Towards a Universal Robotic Low-
Level Programming Language. in Proceedings of
IROS'05 (International Conference on Intelligent Robots
and Systems).

[3] J.C. Baillie. Urbi language specification.
www.urbiforge.com, urbi.sourceforge.net, 2005.

[4] Sony. Open-r sdk for aibo robots, www.openr.aibo.com
2005.

[5] John Schacter. The Impact of Education Technology on
Student Achievement, Milken Exchange on Education
Technology 1999, www.mff.org/pubs/ME161.pdf

[6] Kaplan, F., Oudeyer, P-Y., Kubinyi, E. and Miklosi, A.
Robotic clicker training. Robotics and Autonomous
Systems, 38(3-4):197-206 2002

[7] Ehrenmann, M. Rogalla, O. Zöllner, R. and Dillmann, R.

 In Proc. of the IEEE Int. Conf. on Field
and Service Robotics 2001 (FRS), Finnland 2001

Teaching Service Robots Complex Tasks: Programming
by Demonstation for Workshop and Household
Environments.

[8] World Robotics 2004, UNECE United Nations Economic
Commission for Europe, 2004, www.unece.org

[9] Tekkotsu Development Framework for AIBO Robots:
www.tekkotsu.org, Carnegie Mellon University.

[10] Richard T. Vaughan and Andrew Howard. On device
abstractions for portable, resuable robot code. In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robot Systems, pages 2121–2427, October
2003.

[11] Huang, Q. Yokoi, K., Kajita, S., Kaneko, K., Arai, H.,
Koyachi, N., Tanie, K. (2001) Planning walking patterns
for a biped robot. IEEE Trans. on Robotics and
Automation, 17(3), 280--289

p. XYZ

http://www.mff.org/pubs/ME161.pdf
http://www.morpha.de/download/publications/iaim_fsr01.pdf
http://www.morpha.de/download/publications/iaim_fsr01.pdf
http://www.morpha.de/download/publications/iaim_fsr01.pdf

	Introduction
	Interacting with robots
	URBI Architecture
	URBI language
	Getting and setting a device value
	Modifiers
	Serial and parallel commands
	Loops, conditions, event catching
	Multiplexing
	Other language elements

	Code examples on Aibo
	Ball Tracking Head
	Mirroring
	Stand-up sequence
	Walk sequences and perturbation-based turning

	Possible role of URBI in the development of everyday robotic
	URBI as a standard
	URBI as an educational tool
	Home shared computing

	Conclusion
	References

