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Abstract

In this paper, we present the Non-Audible Murmur (NAM) mi-
crophones focusing on their applications in automatic speech
recognition. A NAM microphone is a special acoustic sensor
attached behind the talker’s ear and able to capture very qui-
etly uttered speech (non-audible murmur) through body tissue.
Previously, we reported experimental results for non-audible
murmur recognition using a Stethoscope microphone in a clean
environment. In this paper, we also present a more advanced
NAM microphone, the so-called Silicon NAM microphone. Us-
ing a small amount of training data and adaptation approaches,
we achieved a 93.9% word accuracy for a 20k vocabulary dic-
tation task. Therefore, in situations when privacy in human-
machine communication is preferable, NAM microphone can
be very effectively applied for automatic recognition of speech
inaudible to other listeners near the talker. Because of the na-
ture of non-audible murmur (e.g., privacy) investigation of the
behavior of NAM microphones in noisy environments is of high
importance. To do this, we also conducted experiments in real
and simulated noisy environments. Although, using simulated
noisy data the NAM microphones show high robustness against
noise, in real environments the recognition performance de-
creases markedly due to the effect of the Lombard reflex. In
this paper, we also report experimental results showing the neg-
ative impact effect of the Lombard reflex on non-audible mur-
mur recognition. In addition to a dictation task, we also report
a keyword-spotting system based on non-audible murmur with
very promising results.

1. Introduction

Non-Audible murmur (NAM) is very quietly uttered speech that
cannot be heard by listeners near the talker. It is captured us-
ing a NAM microphone [1], which is a special acoustic sen-
sor attached behind the talker’s ear. Figure 1 shows the de-
sign of Silicon NAM microphone developed by Nakajima et al.
in Nara Ingtitute of Science and Technology, Japan. A NAM
microphone is a body-conductive acoustic transducer, in which
speech is captured directly from the talker’s body through tissue
or bone. Thus, such a transducer shows high robustness against
noise and can capture voices with a very low intensity. Similar
studies have been proposed by Zheng et al. [2], Graciarena et
al. [3], and Jou et al [4] for noise robust speech recognition or
soft whisper speech recognition.

Similarly to whisper speech, non-audible murmur is un-
voiced speech produced by vocal cords not vibrating and does
not incorporate any fundamental (FO) frequency. Moreover,
body tissue and loss of lip radiation acts as a low-pass filter
and the high-frequency components are attenuated. However,
the non-audible murmur spectral components still provide suf-
ficient information to distinguish and recognize sounds accu-
rately. To realize this, new hidden Markov models (HMMs)
have to be trained using non-audible murmur data.

Previously, we reported HMM-based non-audible murmur
automatic recognition using a Stethoscope NAM microphone
with very promising results [5]. We also reported experi-

ments for integrated non-audible murmur recognition and au-
dible speech recognition using a NAM microphone [6].

In this paper, we also investigate non-audible murmur
recognition in noisy environments using a Stethoscope and a
Silicon NAM microphone. However, because of the nature of
non-audible murmur (e.g., privacy), it is of high importance
to also deal with noisy conditions, such as background speech
and office noise, in automatic non-audible recognition. We car-
ried out experiments using simulated noisy test data and data
recorded under noisy conditions. Although using simulated
noisy data the performance did not decrease significantly com-
pared with that of the clean case, using real noisy data the per-
formance decreased markedly. To investigate this problem, we
studied the role of the Lombard reflex [7, 8] in non-audible
murmur recognition and conducted experiments using Lombard
non-audible murmur data. Results showed, that the Lombard re-
flex seriously affects the performance of non-audible murmur.
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Figure 1: Silicon NAM microphone
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Figure 2: Power spectrum of the Japanese syllables /kini/ cap-
tured by NAM microphone
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Figure 4: Non-audible murmur recognition using clean test data

2. Speaker-dependent non-audible
murmur recognition

In this section, we present experimental results for speaker-
dependent non-audible murmur recognition using NAM mi-
crophones. The recognition engine was the Julius 20k vo-
cabulary Japanese dictation Toolkit [9]. The initial mod-
els were speaker-independent, gender-independent, 3000-state
Phonetic Tied Mixture (PTM) HMMs, trained with the JNAS
database and the feature vectors were of length 25 (12 MFCC,
12 AMFCC, AE). The non-audible murmur HMMs were trained
using a combination of supervised 128-classes regression tree
MLLR [10] and MAP [11] adaptation methods. Using, how-
ever, MLLR and MAP combination, the parameters are previ-
ously transformed using MLLR, and the transformed parame-
teres are used as priors in MAP adaptation. In this way, during
MLLR the acoustic space is shifted and the MAP adaptation
performs more accurate transformations. Moreover, due to the
use of a regression tree in MLLR, parameters which do not ap-
pear in the training data, and therefore are not transformed dur-
ing MAP, are transformed previously during MLLR. Due to the
large difference between the training data and the initial models,
single-iteration adaptation is not effective in non-audible mur-
mur recognition. Instead, a multi-iteration adaptation scheme
was used. The initial models are adapted using the training data
and intermediate adapted models were trained. The interme-
diate models were used as initial models and were re-adapted
using the same training data. This procedure was continued un-
til no further improvement was obtained. Results showed, that
after 5-6 iterations significant improvement was achieved com-
pared to the single-iteration adaptation. This training procedure
is similar to that proposed by [12], but the object is different.

2.1 Non-audible murmur recognition using clean data

In this experiment, both training and test data were recorded
in a clean environment by a male speaker using NAM micro-
phones. For training, 350 and for testing 48 non-audible mur-
mur utterances were used. Figure 4 shows the achieved results.
As the figure shows, the results are very promising. Using a
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Figure 5: Non-audible murmur recognition using simulated
noisy test data
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Figure 6: Long-term power spectrum of office noise used in our

experiments

small amount of data and adaptation techniques, we achieved
a word performance comparable to normal-speech recognition
(96.2% word accuracy). More specifically, using a stethoscope
microphone we achieved an 88.9% word accuracy and using a
silicon NAM microphone we achieved a 93.9% word accuracy
for non-audible murmur recognition. The results also show the
effect of the multi-iteration adaptation scheme. As can be seen,
with increasing number of adaptation iterations, the word accu-
racy was markedly increased.

2.2 Non-audible murmur recognition using simulated
noisy test data

In this experiment, office noise was played back at different lev-
els (dBA) and recorded using a NAM microphone attached to a
female talker. We recorded noises at 50 dBA and 60 dBA levels.
The recorded noises were then superimposed on 24 clean non-
audible murmur utterances, uttered by the same female speaker,
to create the simulated noisy data. The acoustic models were
trained using 100 non-audible murmur utterances recorded in a
clean environment.

The results showed that the performance remained almost
equal to that of the clean case when noise was superimposed
on clean test data and recognition was performed using clean
HMMs. More specifically, we achieved 83.7%, 82.9% and
80.9% word accuracies for the clean case, the 50 dBA noise
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Figure 7: Long-term power spectrum of office noise at 70dBA
level captured by NAM microphones
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Figure 8: Non-Audible murmur recognition using noisy test
data (office noise)
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Figure 9: Non-Audible murmur recognition using various types
of noise

level, and the 60 dBA noise level, respectively.

2.3 Non-audible murmur recognition using real noisy test
data

In this section, we report experimental results for non-audible
murmur recognition using real noisy database. The noisy test
data were recorded in an environment, where different types of
noise were playing back at 50 dBA and 60 dBA levels, while
a speaker was uttering the test data. Four types of noise were
used (office, car, poster, and crowd). For each noise and each
level 24 utterances were recorded.

Figure 8 shows the obtained results when using office noise
in comparison with the case when the same noise was superim-
posed on the clean data. As can be seen, using real noisy test
data, the performance decreases. Namely, at the 50 dBA noise
level the obtained word accuracy was 68.4% and at the 60 dBA
noise level 47%.

Figure 9 shows the word accuracies for the four types of
noise. The results are similar to the previous ones. With in-
creasing noise level, word accuracy decreases significantly. For
the clean case we achieved an 83.7% word accuracy, for the
50 dBA noise level a 66.9% word accuracy on average, and for
the 60 dBA noise level a 53.3% word accuracy on average. In
the case of car and crowd noises, the difference between the 50
dBA and 60 dBA performances is not very large. In the case of
poster and office noises, the difference is larger.

Although, the performance using real noisy data is not
markedly low and non-audible recognition is still possible, fur-
ther investigations are necessary. In several studies, a negative
impact effect of the Lombard reflex on automatic recognizers
for normal speech has been reported. It is possible, therefore,
that the degradations in word accuracy for non-audible murmur
recognition when using real noisy data, are also related to the
Lombard reflex. To realize this, we also addressed the Lombard
reflex problem.
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Figure 10: Power spectrum of clean vowel /O/ and Lombard
vowel /O/
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Figure 11: Waveform of clean vowel /O/ (upper) and Lombard
vowel /O/

3. The role of the Lombard reflex in
non-audible murmur recognition

When speech is produced in noisy environments, speech pro-
duction is modified leading to the Lombard reflex. Due to
the reduced auditory feedback, the talker attempts to increase
the intelligibility of his speech, and during this process several
speech characteristics change. More specifically, speech inten-
sity increases, fundamental frequency (F0) and formants shift,
vowel durations increase and the spectral tilt changes. As a re-
sult of these modifications, the performance of a speech recog-
nizer decreases due to the mismatch between the training and
testing conditions.

To show the effect of the Lombard reflex, Lombard speech
is usually used, which is a clean speech uttered while the
speaker listens to noise through headphones or earphones.
Even, though, Lombard speech does not contain noise compo-
nents, modifications in speech characteristics can be realized.

Figure 10 shows the power spectrum of a normal-speech
clean vowel /O/ and a Lombard vowel /O/ recorded while listen-
ing to office noise through headphones at 75 dBA noise level.
The figure clearly shows the modifications leading to the Lom-
bard reflex; power increased, formants shifted and spectral tilt
changed. Figure 11 shows the waveforms of the clean and
Lombard /O/ vowels. As can be seen, the duration and ampli-
tude of the Lombard vowel also increased. These differences
in the spectra cause feature distortions (e.g., Mel Frequency
Cepstral Coefficients (MFCC) distortions), and acoustic models
trained using clean speech might fail to correctly match speech
affected by the Lombard reflex.

Figure 12 shows the waveform, spectrogram, and FO con-
tour of a Lombard non-audible utterance recorded at 80 dBA.
As can be seen, this Lombard non-audible murmur speech has
characteristics similar to those of normal speech. Therefore,
when non-audible murmur recognition is performed in noisy
environments, the produced non-audible murmur characteristics
are different than those of the non-audible murmur used in the
training. As a result, the performance is degraded, even though
the NAM microphone can capture non-audible murmur without
a high sensitivity to environmental noise.

To show the effect of the Lombard reflex on non-audible
murmur recognition, we carried out an experiment using Lom-
bard non-audible murmur test data. The data were recorded
in an anechoic room, while the speaker was listening to office
noise through headphones. Since we used high-quality head-



Joint sOc-EUSAI conference

2z
7

o e LM M| B el R
0L s A \4)"1““‘ ‘ Tj V‘:/L,m"f..,m,mﬁ J L g gt e
T R T

S T U

8 HE

Figure 12: Lombard non-audible murmur recorded at 80 dBA
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Figure 13: Non-Audible murmur recognition using Lombard
data

phones, we assumed that no noise from the headphones was
added to the recorded data. We recorded 24 clean utterances, 24
utterances at 50 dBA and 24 utterances at 60 dBA noise levels.
The acoustic models used were trained with clean non-audible
murmur data using 50 utterances and MLLR adaptation.

Figure 13 shows the obtained results and the effect of the
Lombard reflex on non-audible murmur recognition. Using
clean test data, we achieved a 67.3% word accuracy, using
50 dBA Lombard data a 54.2% word accuracy, and using 60
dBA Lombard data a 47.5% word accuracy. These results show
an analogy between the experiments using real noisy data and
the experiment using Lombard data. In both cases, the perfor-
mances decreased almost equally.

In non-audible murmur phenomena, the Lombard reflex is
also present when there is no masking noise. However, due to
the very low intensity of non-audible murmur, speakers might
not hear their own voice. To make their voice audible, they
increase their vocal levels, and as a result, non-audible murmur

4. A keyword-spotting system based on
non-audible murmur

In this section, we present a keyword-spotting experiment for
non-audible murmur. A non-audible murmur-based keyword-
spotting system, however, can be applied to extract a specific
number of keywords from unconstrained input speech in pri-

Figure 14: Grammar used in the keyword-spotter
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Figure 15: Receiver Operating Characteristics (ROC) for non-
audible murmur keyword-spotter
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Figure 16: Detection and rejection rates for non-audible mur-
mur keyword-spotter

vacy conditions. In some applications, when only a small num-
ber of keywords is required, a keyword-spotting system, with
lower complexity and faster decoding, might be more reason-
able than a dictation system.

In a keyword-spotting approach, not only the keywords, but
also the non-keyword intervals must be modeled explicitly. Our
approach, was based on phonemic garbage models [13]. The
keywords were modeled using context-dependent HMMs, and
monophone HMMs were used to model the non-keyword por-
tions. Both HMM sets were trained with non-audible murmur
data recorded using a silicon NAM microphone. Fourty-three
monophone HMMs were connected as to allow any sequence.
The vocabulary consisted of 25 keywords randomly selected
from JNAS database. Figure 14 shows the grammar used in
our experiment, which allowed at most one keyword per utter-
ance.

In our experiment, the following evaluation measures were
used:

e Detection rate. The percentage of keywords detected.

e Rejectionrate. The percentage of non-keywords rejected.

e Receiver Operating Characteristics (ROC) and Figure of
Merit (FOM). The putative hits are sorted with respect to
their scores, and the probability of detection at each false
alarm is computed. The FOM is calculated as the average
probability of detection between 0 and 10 false alarms per
keyword.

For testing, we used 18 utterances, which included one key-
word, and 24 utterances which did not include any keyword.
Figure 15 shows the ROC curves. The figure shows, that by
allowing 4 alarms per keyword we achieved 88.2% detection
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rate. The achieved FOM was 85.6%, which is promising result.
The figure also shows, that using duration normalized scores the
performance was decreased. Figure 16 shows the detection and
rejection rates. To achieve higher detection and rejection rates,
a word insertion penalty is tuned to decrease the likelihood of
the garbage models. Without this tuning, however, a large num-
ber of false rejections (keywords are hypothesized as garbage
models) appears, and as a result the detection rate decreases.
With word insertion penalty tuning, we achieved a 82.5% equal
rate (equal detection and rejection rates).

5. Conclusions

In this paper, we presented non-audible murmur recognition in
clean and noisy noisy environments using NAM microphones.
A NAM microphone is a special acoustic device attached be-
hind the talker’s ear, which can capture very quietly uttered
speech. Non-Audible murmur recognition can be used when
privacy in human-machine communication is desired. Since
non-audible murmur is captured directly from the body, it is
less sensitive to environmental noises. To show this, we car-
ried out experiments using simulated and real noisy data. Us-
ing simulated noisy data at 50 dBA and 60 dBA noise levels,
the non-audible murmur recognition performance was almost
equal to that of the clean case. Using, however, data recorded in
noisy environments, the performance decreased. To investigate
the possible reasons for this, we studied the role of the Lom-
bard effect in non-audible murmur recognition and we carried
out an experiment using Lombard data. The results showed that
the Lombard reflex has a negative impact effect on non-audible
murmur recognition. Due to the speech production modifica-
tions, the non-audible murmur characteristics under Lombard
conditions are changed and show a high similarity to normal
speech. Due to this fact, a mismatch appears between the train-
ing and testing conditions and the performance decreases. As
future work, we plan to investigate methods of decreasing the
effect of the Lombard reflex on non-audible murmur recog-
nition. A possible solution might be the adaptation of clean
acoustic models to several Lombard conditions. In addition to a
dictation task, we also reported a keyword-spotting experiment
based on non-audible murmur with very promising results.
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