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Abstract 

As robotic systems become increasingly capable of complex 
sensory, motor and information processing functions, the 
ability to interact with them in an ergonomic, real-time and 
adaptive manner becomes an increasingly pressing concern. In 
this context, the physical characteristics of the robotic device 
should become less of a direct concern, with the device being 
treated as a system that receives information, acts on that 
information, and produces information. Once the input and 
output protocols for a given system are well established, 
humans should be able to interact with these systems via a 
standardized spoken language interface that can be tailored if 
necessary to the specific system. 

The objective of this research is to develop a generalized 
approach for human-machine interaction via spoken language 
that allows interaction at three levels. The first level is that of 
commanding or directing the behavior of the system. The 
second level is that of interrogating or requesting an 
explanation from the system. The third and most advanced 
level is that of teaching the machine a new form of behavior. 
The mapping between sentences and meanings in these 
interactions is guided by a neuropsychologically inspired 
model of grammatical construction processing. We explore 
these three levels of communication on two distinct robotic 
platforms. The novelty of this work lies in the use of the 
construction grammar formalism for binding language to 
meaning extracted from video in a generative and productive 
manner, and in thus allowing the human to use language to 
command, interrogate and modify the behavior of the robotic 
systems. 

1. Introduction 

Ideally, research in Human-Robot Interaction will allow 
natural, ergonomic, and optimal communication and 
cooperation between humans and robotic systems. In order to 
make progress in this direction, we have identified two major 
requirements: First, we must study a real robotics 
environment in which technologists and researchers have 
already developed an extensive experience and set of needs 
with respect to HRI. Second, we must study a domain 
independent language processing system that has 
psychological validity, and that can be mapped onto arbitrary 
domains. In response to the first requirement regarding the 
robotic context, we will study two distinct robotic platforms. 
The first is a system that can perceive human events acted out 
with objects, and can thus generate descriptions of these 
actions. The second platform involves Robot Command and 
Control in the international context of robot soccer playing, in 

which the Weitzenfeld group competes at the international 
level. From the psychologically valid language context, we 
will study a model of language and meaning correspondence 
developed by Dominey (et al. 2003) that has described both 
neurological and behavioral aspects of human language, and 
has been deployed in robotic contexts. 

2. Platform 1 

 In a previous study, we reported on a system that could 
adaptively acquire a limited grammar based on training with 
human narrated video events (Dominey & Boucher 2005). An 
overview of the system is presented in Figure 1. Figure 1A 
illustrates the physical setup in which the human operator 
performs physical events with toy blocks in the field of view 
of a color CCD camera. Figure 1B illustrates a snapshot of the 
visual scene as observed by the image processing system. 
Figure 2 provides a schematic characterization of how the 
physical events are recognized by the image processing 
system. As illustrated in Figure 1, the human experimenter 
enacts and simultaneously narrates visual scenes made up of 
events that occur between a red cylinder, a green block and a 
blue semicircle or “moon” on a black matte table surface. A 
video camera above the surface provides a video image that is 
processed by a color-based recognition and tracking system 
(Smart – Panlab, Barcelona Spain) that generates a time 
ordered sequence of the contacts that occur between objects 
that is subsequently processed for event analysis.  

Using this platform, the human operator performs physical 
events and narrates his/her events. An image processing 
algorithm extracts the meaning of the events in terms of 
action(agent, object, recipient) descriptors. The event 
extraction algorithm detects physical contacts between objects 
(see Kotovsky & Baillargeon 1998), and then uses the 
temporal profile of contact sequences in order to categorize 
the events, based on the temporal schematic template 
illustrated in Figure 2. While details can be found in Dominey 
& Boucher (2005), the visual scene processing system is 
similar to related event extraction systems that rely on the 
characterization of complex physical events (e.g. give, take, 
stack) in terms of composition of physical primitives such as 
contact (e.g. Siskind 2001, Steels and Bailly 2003). Together 
with the event extraction system, a commercial speech to text 
system (IBM ViaVoiceTM) was used, such that each narrated 
event generated a well formed <sentence, meaning> pair. 
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Figure 1. Overview of human-robot interaction platform. 
A. Human user interacting with the blocks, narrating events, 
and listening to system generated narrations. B. Snapshot of 
visual scene viewed by the CCD camera of the visual event 
processing system. 

 

 
Figure 2. Temporal profile of contacts defining different event 
types: Touch, push, take, take-from, and give. 

2.1 Processing Sentences with Grammatical Constructions 

These <sentence, meaning> pairs are used as input to the 
model in Figure 3 that learns the sentence-to-meaning 
mappings as a form of template in which nouns and verbs can 
be replaced by new arguments in order to generate the 
corresponding new meanings. These templates or grammatical 
constructions (see Goldberg 1995) are identified by the 
configuration of grammatical markers or function words 
within the sentences (Bates et al. 1987). Here we provide a 
brief overview of the model, and define the representations 

and functions of each component of the model using the 
example sentence “The ball was given to Jean by Marie,” and 
the corresponding meaning “gave(Marie, Ball, John)” in 
Figure 2. 

Sentences: Words in sentences, and elements in the scene 
are coded as single bits in respective 25-element vectors, and 
sentences can be of arbitrary length. On input, Open class 
words (ball, given, Jean, Marie) are stored in the Open Class 
Array (OCA), which is thus an array of 6 x 25 element 
vectors, corresponding to a capacity to encode up to 6 open 
class words per sentence. Open class words correspond to 
single word noun or verb phrases, and determiners do not 
count as function words. 

Identifying Constructions: Closed class words (e.g. was, 
to, by) are encoded in the Construction Index, a 25 element 
vector, by an algorithm that preserves the identity and order 
of arrival of the input closed class elements. This thus 
uniquely identifies each grammatical construction type, and 
serves as an index into a database of <form, meaning> 
mappings.  

Meaning: The meaning component of the <sentence, 
meaning> pair is encoded in a predicate-argument format in 
the Scene Event Array (SEA). The SEA is also a 6 x 25 array 
that encodes meaning in a predicate-argument representation. 
In this example the predicate is gave, and the arguments 
corresponding to agent, object and recipient are Marie, Ball, 
John. The SEA thus encodes one predicate and up to 5 
arguments, each as a 25 element vector. During learning, 
complete <sentence, meaning> pairs are provided as input. In 
subsequent testing, given a novel sentence as input, the 
system can generate the corresponding meaning. 

Sentence-meaning mapping: The first step in the 
sentence-meaning mapping process is to extract the meaning 
of the open class words and store them in the Predicted 
Referents Array (PRA). The word meanings are extracted 
from the real-valued WordToReferent matrix that stores 
learned mappings from input word vectors to output meaning 
vectors. The second step is to determine the appropriate 
mapping of the separate items in the PredictedReferentsArray 
onto the predicate and argument positions of the 
SceneEventArray. This is the “form to meaning” mapping 
component of the grammatical construction. PRA items are 
thus mapped onto their roles in the Scene Event Array (SEA) 
by the FormToMeaning mapping, specific to each 
construction type. FormToMeaning is thus a 6x6 real-valued 
matrix. This mapping is retrieved from 
ConstructionInventory, based on the ConstructionIndex that 
encodes the closed class words that characterize each sentence 
type. The ConstructionIndex is a 25 element vector, and the 
FormToMeaning mapping is a 6x6 real-valued matrix, 
corresponding to 36 real values. Thus the 
ConstructionInventory is a 25x36 real-valued matrix that 
defines the learned mappings from ConstructionIndex vectors 
onto 6x6 FormToMeaning matrices. Note that in 3A and 3B 
the ConstructionIndices are different, thus allowing the 
corresponding FormToMeaning mappings to be handled 
separately. 

A 

B 
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Figure 3. Model Overview: Processing of active and passive 
sentence types in A, B, respectively. On input, Open class 
words populate the Open Class Array (OCA), and closed class 
words populate the Construction index. Visual Scene Analysis 
populates the Scene Event Array (SEA) with the extracted 
meaning as scene elements. Words in OCA are translated to 
Predicted Referents via the WordToReferent mapping to 
populate the Predicted Referents Array (PRA). PRA elements 
are mapped onto their roles in the Scene Event Array (SEA) 
by the SentenceToScene mapping, specific to each sentence 
type. This mapping is retrieved from Construction Inventory, 
via the ConstructionIndex that encodes the closed class words 
that characterize each sentence type. Words in sentences, and 
elements in the scene are coded as single ON bits in respective 
25-element vectors. 

2.2 Communicative Performance 

We have demonstrated that this model can learn a variety of 
grammatical constructions in different languages (English and 
Japanese) (Dominey & Inui 2004). Each grammatical 
construction in the construction inventory corresponds to a 
mapping from sentence to meaning. This information can thus 
be used to perform the inverse transformation from meaning 
to sentence. For the initial sentence generation studies we 
concentrated on the 5 grammatical constructions below. These 
correspond to constructions with one verb and two or three 
arguments in which each of the different arguments can take 
the focus position at the head of the sentence. On the left are 
presented example sentences, and on the right, the 
corresponding generic construction. In the representation of 
the construction, the element that will be at the pragmatic 
focus is underlined. This information will be of use in 
selecting the correct construction to use under different 
discourse requirements. 

This construction set provides sufficient linguistic flexibility, 
so that for example when the system is interrogated about the 
block, the moon or the triangle after describing the event 
give(block, moon, triangle), the system can respond 
appropriately with sentences of type 3, 4 or 5, respectively. 
The important point is that each of these different 
constructions places the pragmatic focus on a different 
argument by placing it at the head of the sentence. Note that 
sentences 1-5 are specific sentences that exemplify the 5 

constructions in question, and that these constructions each 
generalize to an open set of corresponding sentences. 
 
Table 1. Sentences and corresponding constructions. 
Sentence 
1. The triangle pushed the moon.  
2. The moon was pushed by the triangle. 
3. The block gave the moon to the triangle. 
4. The moon was given to the triangle by the block.  
5. The triangle was given the moon by the block. 
 
Construction <sentence, meaning>  
1. <Agent event object,  
 event(agent, object> .  
2. <Object was event by agent,  
 event(agent, object>  
3. <Agent event object to recipient, 
 event(agent, object, recipient)> 
4. <Object was event to recipient by agent, 
 event(agent, object, recipient)> 
5. <Recipient was event object by agent, 
 event(agent, object, recipient)>  
 
The algorithm for selection of the construction type for 
sentence production takes as input a meaning coded in the 
form event(arg1, arg2, arg3), and an optional focus item (one 
of the three arguments). Based on this input, the system will 
deterministically choose the appropriate two or three 
argument construction, with the appropriate focus structure, 
in a pragmatically relevant manner. Thus, in the dialog 
example below, the human user generates an event 
corresponding to gave(block, cylinder, moon) and then asks 
what happened to the moon. Based on these inputs, the 
system selects the three argument construction in which the 
recipient is the focus element (Construction 5). The predicate 
and arguments from the meaning are inserted into their 
appropriate positions, and the system thus responds: The 
moon was gave the cylinder by the block. 

The next task at hand is to integrate these pieces, including (a) 
scene processing for event recognition, (b) sentence 
generation from scene description and response to questions, 
(c) speech recognition for posing questions, and (d) speech 
synthesis for responding - into an interactive environment. 
The CSLU Speech Tools Rapid application Development 
(RAD) (http://cslu.cse.ogi.edu/toolkit/index.html) provides 
useful capability in this context. The system provides dialog 
management with a flexible and powerful graphical user 
interface, coupled with the global ability to link speech 
recognition and synthesis to the conditional execution of code 
on the same machine or on remote machines via ftp and 
socket protocols. This results in a hub architecture with RAD 
at the hub and the vision processing, language model, speech-
to-text and voice synthesis at the periphery. 
 

Example Dialog with Platform 1 
Here we provide an example of typical dialog. Speech is 
indicated in italics. 
 
Robot: Welcome to the talking robot demonstration. Show me 

an object. 
Human: (Picks up and moves the block) 
Robot: That is the block. Another object? 
Human: Yes (moves the moon) 
Robot: That is the moon. Another object? 
Human: No. 
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Robot: Shall we stop or go on? 
Human: Go on. 
Robot: When you are ready, make a movement with the 

objects so that I can see what you are doing. I will then 
describe what you did. 

Human: (picks up the block and uses it to move the cylinder 
to the moon). 

Robot: The block gave the cylinder to the moon. Was I 
correct? 

Human: Yes. 
Robot: Good for me. (stores results in database) Do you have 

any questions? 
Human: Yes. 
Robot: Would you like to know about the block, the moon or 

the cylinder? 
Human: The moon. 
Robot: The moon was gave the cylinder by the block. Do you 

have any questions? 
Human: Yes. 
Robot: Would you like to know about the block, the moon or 

the cylinder? 
Human: The cylinder. 
Robot: The cylinder was gave to the moon by the block. 
 
The sample dialog illustrates how vision and speech 
processing are combined in an interactive manner. Two points 
are of particular interest. In the response to questions, the 
system uses the focus element in order to determine which 
construction to use in the response. This illustrates the utility 
of the different grammatical constructions. However, we note 
that the two passivized sentences have a grammatical error, as 
“gave” is used, rather than “given”. This type of error can be 
observed in inexperienced speakers either in first or second 
language acquisition. Correcting such errors requires that the 
different tenses are correctly associated with the different 
construction types, and will be addressed in future research. 

These results demonstrate the capability to command the 
robot (with respect to whether objects or events will be 
processed), and to interrogate the robot, with respect to who 
did what to whom. Gorniak and Roy (2004) have 
demonstrated a related capability for a system that learns to 
describe spatial object configurations, but with less flexibility 
in the use of appropriate grammatical constructions. 

3 Platform 2 Aibo ERS7 

In order to demonstrate the generalization of this approach to 
an entirely different robotic platform we have begun a series 
of studies using the AIBO ERS7 mobile robot platform 
illustrated in Figure 4. We have installed on this robotic 
system an open architecture operating system, the Tekkotsu 
framework developed at CMU (http://www-
2.cs.cmu.edu/~tekkotsu/), graphically depicted in Figure 4B. 
The Tekkotsu system provides vision and motor control 
processing running on the AIBO, with a telnet interface to a 
control program running on a host computer connected to the 
AIBO via wireless internet. Via this interface, the AIBO can 
be commanded to perform different actions in the Tekkotsu 
repertoire, and it can be interrogated with respect to various 
internal state variables. 

 
Figure 4. A schematic view of the Tekkotsu architecture for 
vision and behavioral event processing that runs on the Sony 
AIBO ERS7TM robot, and their integration with the CSLU 
RAD spoken language application toolkit. 
 
The objective of the current exercise is to provide a spoken 
language interface to the AIBO using the CSLU-RAD 
framework as described in Platform 1. The interface will be 
used between Aibo Robots in the RoboCup robot soccer 
context, and coaches that direct the activity of the robots. The 
RoboCup environment has been chosen because it is a well 
documented standardized robot environment that the ITAM 
team has extensive experience with, and thus provides a 
quantitative domain for evaluation of success. 
In order to demonstrate the feasibility of this approach we 
have developed an initial platform prototype that we now 
describe. Using the CSLU-RAD interface, the AIBO offers 
the human a set of possible actions that can be commanded, 
including shaking hands, chasing the red ball, or following 
the red ball with the gaze direction. The user then speaks one 
of these commands and the robot performs the command. 
This is illustrated in the sample dialog below. 
 
Robot: Hello I am AIBO the talking dog. I can look at the 

ball, chase the ball and shake hands. Ask me to do 
something. 

Human: Chase the ball 
Robot: OK I will chase the ball for a bit and then I will stop. 

(Chases the ball for 10 seconds). So, you wanted me to 
chase the ball. Do you want to do something else? 

Human: Yes. 
Robot: I can look at the ball, chase the ball and shake hands. 

Ask me to do something. 
Human: Shake hands. 
Robot: (Raises and lowers its left paw). So, you wanted me to 

shake hands. Do you want to do something else? 
Human: No. 
Robot: Ok, I think I will take a rest now. 
 
This dialog demonstrates the feasibility of the use of a 
“generic” natural language interface to the AIBO via the 
Tekkotsu architecture, and provides a demonstration of the 
ability to verbally command the robot in this context. In this 
same context it will be straightforward to read status data 
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from the AIBO in order to ask questions about the state of the 
battery, whether or not the AIBO can see the ball, etc. and to 
use the construction grammar framework for formulating the 
answers In this sense we have demonstrated the first steps 
towards the development of a generic communication 
architecture that can be adapted to different robot platforms. 

3. Learning 

The final aspect of the three part “tell, ask, teach” scenario 
involves learning. Our goal is to provide a generalized 
platform independent learning capability that acquires new 
<percept, response> constructions. That is, we will use 
existing perceptual capabilities, and existing behavioral 
capabilities of the given system in order to bind these together 
into new, learned <percept, response> behaviors (Dominey et 
al. 2006).  

In both of these Platform contexts common idea is to create 
new <percept, response> pairs that can be permanently 
archived and used in future interactions. This requirement 
breaks down into three components. The first component 
involves specifying to the system the nature of the percept 
that will be involved in the <percept, response> construction. 
This percept can be either a verbal command, or an internal 
state of the system that can originate from vision or from 
another sensor such as the battery charge state. The second 
component involves specifying to the system what should be 
done in response to this percept. Again, the response can be 
either a verbal response or a motor response from the existing 
behavioral repertoire. The third component is the binding 
together of the <percept, response> construction, and the 
storage of this new construction in a construction data-base so 
that it can be accessed in the future. This will permit an open-
ended capability for a variety of new types of communicative 
behavior. 

For Platform 1 this capability has been used for teaching the 
system to name and describe new geometrical configurations 
of the blocks. The human user presents a configuration of 
objects and name the configuration (e.g. four object placed in 
a square, and say « this is a square »). The system will learn 
this configuration, and the human will test with different 
positive and negative examples.  

For Platform 2 this capability has been used to teach the 
system to respond with physical action or other behavioral (or 
internal state) responses to perceived objects, or perceived 
internal states. The user enters into a dialog context, and tells 
the robot that we are going to learn a new behavior. The robot 
asks what is the perceptual trigger of the behavior and the 
human responds. The robot then asks what is the response 
behavior, and the human responds. The robot links the 
<percept, response> pair together so that it can be used in the 
future. The human then enters into a dialog context from 
which he tests whether the new behavior has been learned. 
 
Example Dialog for Teaching and Asking the ERS7  
 
Robot: Hello I am AIBO the talking dog. Do you want to teach 
me a new action, or test what I already know. 
Human: New action. 
Robot: Watch what I can do. (Stands up straight). Do you 
want to name this action, or associate it with a button press.  
Human: Name. 
Robot: What would you like to call this action? 
Human: Stand up. 

Robot: Ok I have learned to call this action Stand up. Do you 
want to teach me another action?  
Human: Yes. 
Robot: Watch what I can do. (raises its left fore-leg). Do you 
want to name this action, or associate it with a button press.  
Human: Button. 
Robot: Ok, press one of my buttons. 
Human: (Presses the head button) 
Robot: Ok, this action has been linked with the button you 
pressed. 
….. 
Robot: Do you want to test another action I know? 
Human: Yes 
Robot: Do you want to speak to me or to press a button 
Human: Speak 
Robot: Select one action by saying its name 
Human: Stand up 
Robot: Dog stands up 

4. Lessons Learned and Conclusions 

The research described here represents work in progress 
towards a generic control architecture for communicating 
systems that allows the human to “tell, ask, and teach” the 
system. This is summarized in Table 2. For the principal 
lessons learned there is good news and bad news (or rather 
news about hard work ahead, which indeed can be considered 
good news.) The good news is that given a system that has 
well defined input, processing and output behavior, it is 
technically feasible to insert this system into a spoken 
language communication context that allows the user to tell, 
ask, and teach the system to do things. This may require some 
system specific adaptations concerning communication 
protocols and data formats, but these issues can be addressed. 
The tough news is that this is still not human-like 
communication. A large part of what is communicated 
between humans is not spoken, and rather relies on the 
collaborative construction of internal representations of 
shared goals and intentions (Tomasello et al in press). What 
this means is that more than just building verbally guided 
interfaces to communicative systems, we must endow these 
systems with representations of their interaction with the 
human user. These representations will be shared between the 
human user and the communicative system, and will allow 
more human-like interactions to take place (Tomasello 2003). 
Results from our ongoing research permit the first steps in 
this direction (Dominey 2005). 

 
Table 2. Status of “tell, ask, and teach” capabilities in the two 
robotic platforms. 
  Robot   

Platforms 
 
 
 
Capability 

Platform 1. 
Event Vision 
and Description 

Platform 2. Behaving 
Autonomous Robot 

1. Tell  Command different 
actions (shake, chase the 
ball, etc.) 

2. Ask Ask who did 
what in a given 
action 

Ask what is the battery 
state ? 
Can you see the ball ? 

3. Teach This is a stack 
This is a square, 
etc. 

Associate perceptual 
events with behaviors. 
Head-touch -> Bark.  
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In conclusion, there are two distinct novel components of this 
work. The first lies in the manner of linking of language to 
meaning that has been extracted from video. The meaning 
extraction is similar to that described by Siskind (2001). The 
resulting meaning in a predicate-argument format is mapped 
onto language in a novel fashion via learned grammatical 
constructions (Goldberg 1995). Learned constructions (e.g. 
Table 1) can then be used in comprehension and production 
of novel sentences. Part of the novelty is that the system is not 
language dependant, and has been demonstrated in English 
and Japanese (Dominey & Inui 2004). The second novel 
aspect is that we address how this framework can be used in 
order to teach the systems to recognize new perceptual events 
(Platform 1), and to respond to perceptual events with 
behaviors in new ways (Platform 2). That is, we use language 
to modify the behavior of robotic systems, in order to allow a 
more flexible and adaptive human-robot interaction (Dominey 
et al. 2005). 
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