
Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 1 3

A Reflective Middleware for Controlling Smart Objects from Mobile Devices

Diego López de Ipiña, Iñaki Vázquez, Daniel García, Javier Fernández and Iván García (1)

(1) Faculty of Engineering, University of Deusto
Avda. de las Universidades, 24

48007 Bilbao, SPAIN
{dipina, ivazquez}@eside.deusto.es,{dgarcia, jafernan, ivgarcia}@ctme.deusto.es

Abstract

Mobile devices are mainly used for communication,
entertainment, and as electronic assistants. However, their
increasing computational, storage, communicational and
multimedia capabilities make them suitable for previously
unexpected scenarios such as Ambient Intelligence (AmI).
Thus, mobile devices may be used as intermediaries between
us and the smart objects (everyday objects augmented with
computational services) in our surroundings. This paper
describes the design and implementation of a middleware to
transform mobile devices into universal remote controllers of
smart objects.

1. Introduction

Current PDAs and mobile phones are equipped with
continuously increasing processing and storage capabilities,
better and more varied communications mechanisms
(Bluetooth [1], Wi-Fi, GPRS/UMTS) and increasingly
capable multimedia facilities. Moreover, they are far more
easily extensible (Compact.NET [2], J2ME [3] or Symbian
[4]) than ever before.

Mobile devices equipped with Bluetooth, built-in
cameras, barcode or RFID readers transform into sentient
devices [5], i.e. they are aware of what smart objects are in
their whereabouts. A smart object is an everyday object or
device (door, classroom, parking booth) augmented with
some accessible computational service. Once a mobile device
discovers a nearby smart object, it can induce changes on its
behaviour.

Bearing in mind the technical progress and sentient
features of last generation mobile devices, it is natural to think
that they will play a starring role in the context of Ambient
Intelligence (AmI) [6]. An obvious application will be their
use as facilitators or intermediaries between us and a smart
environment. In other words, mobile devices can behave as
our personal electronic butlers, facilitating and enhancing our
daily activities, and even acting on our behalf based on our
profiles or preferences.

In this paper, we describe the design and implementation
of EMI2lets (Environment to Mobile Intelligent Interaction
applets), a software framework to facilitate the development
and deployment of mobile context-aware applications for AmI
environments.

The structure of the paper is as follows. Section 2
describes EMI2, a software architecture modelling AmI.
Section 3 introduces the EMI2lets platform, a partial
materialisation of the EMI2 architecture, which simplifies
both the creation of software representatives for everyday
objects and their controlling proxies deployed in mobile
devices. Section 4 proposes a novel mechanism to discover
smart objects based on visual tags used in EMI2lets. Section 5
lists some interesting applications produced with the EMI2lets

platform. Section 6 mentions some related work. Finally,
section 7 offers some conclusions and suggests further work.

2. EMI 2: an AmI architecture

Regardless of the continuous progress in the research topics
which contribute to the AmI vision, namely Ubiquitous
Computing [7], context-awareness [8] or intelligent user
interfaces [9], we are still far away from its materialisation.
However, the definition of suitable software architectures and
frameworks specially catered for AmI may be a good starting
point. The EMI2 (Environment to Mobile Intelligent
Interaction) architecture is our proposed solution.

EMI2 defines a multi-agent software architecture, where
agents of different types, modelling the different roles played
by entities in AmI, communicate and cooperate to fulfil a
common goal, i.e. to enhance and facilitate the user
interactions with her smart environment.

Figure 1: The EMI2 Architecture.

We understand by smart environment a location, either

indoors or outdoors, where the objects present within (smart
objects) are augmented with computing services. For instance,
a cinema may be enhanced with a mobile phone locally
accessible (Bluetooth) ticket booking service, so preventing
the user from long queuing to purchase tickets. Similarly, the
door of our office may be augmented with an access control
service which demands a user passing by to enter a PIN in her
mobile to be given access.

Figure 1 depicts the main components of the EMI2
architecture. We distinguish three main types of agents:
• EMI2Proxy: is an agent representing the user, which runs

on the user’s mobile device (PDA or mobile phone). It acts
on behalf of the user, adapting/controlling the environment
for him, both explicitly, under the user’s control, or
implicitly, on its own judgement based on the profiles,
preferences and previous interactions of the user with the
environment.

• EMI2Object: is an agent representing any device or
physical object (e.g. vending machine, door, ticket box)
within a smart environment augmented with computational

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 1 4

services, i.e. the capacity to adapt its behaviour in
response to ambient conditions or user commands. An
EMI2Object cooperates to achieve its goals with other
EMI2 agents.

• EMI2BehaviourRepository: is an agent where knowledge
and intelligence are combined to support sensible
adaptation. EMI2Objects may require the assistance of an
external EMI2BehaviourRepository to coordinate their
own adaptation according to the user’s preferences,
behaviour patterns or even the explicit commands received
from an EMI2Proxy. The user’s mobile device can also be
powered with an internal EMI2BehaviourRepository
loaded with personal information and profiles in order to
minimize the interaction with the owner, i.e. adopting
implicit adaptation.

2.1. Active and passive mechanisms

A concrete agent can influence the environment, and thus, its
constituent agents’ state, via active (explicit interaction) or
passive (implicit interaction) methods.

Active methods are those in which the agent explicitly
commands other agents to change their state or perform an
action. For example, when a user enters a building, a sensor
identifies him and commands the lift to be ready at the ground
floor. When the user stands in front of his office door his
mobile phone commands the electric lock to open. Active
methods can be implemented with any well-known distributed
computing technology capable of issuing commands. These
commands will be transported in a local context by bearers
such as Bluetooth or Wi-Fi and in a global context by
GPRS/UMTS.

Passive methods are those in which an agent disseminates
certain information (profiles, preferences), expecting that
other agents change their state or perform an action at their
discretion to create a more adapted environment. Using
passive methods an agent does not command the target agents
to do anything concrete, it simply publishes/broadcasts
information preferences expecting the others to react
changing their state in a positive way. Passive mechanisms are
less intrusive than active methods, but they are less
predictable and significantly more complex to implement.

In this paper we concentrate on the design and
implementation of a middleware to provide universal active
influence capabilities to our mobile devices over the
surrounding smart objects in our environment. We have
tackled the issue of passive influence over smart objects in
previous work [10].

2.2. The Need for an Active Influence M iddleware

The minimum requirements a middleware for active influence
must address are: (1) a mechanism to discover through ad-hoc
or wireless networking the computing services made available
by surrounding smart objects, and (2) a mechanism to interact
with those discovered services, so that the objects they
represent adapt to the user’s preferences and commands.

The current state of the art in discovery and interaction
platforms falls into three categories [12]. Firstly, solutions in
which discovery protocols are supported by mobile code, e.g.
Jini [13]. After discovery, the service (either a proxy or the full
service) is downloaded onto the mobile device where it then
operates. Secondly, solutions where the discovery protocols
are integrated with specific interaction protocols, which are
used to invoke the service after the service has been
discovered. A good example of this is Universal Plug and Play

(UPnP) [14]. Finally, there are interaction independent
discovery protocols such as Service Location Protocol [15].

Once a service is discovered one of the following
communication mechanisms is normally used: remote method
invocation, publish-subscribe or asynchronous messaging. For
the purpose of this work we will concentrate on the remote
method invocation paradigm, since it accommodates to the
most popular mechanisms for distributed computing such as
CORBA or Web Services.

3. The EMI 2lets platform

EMI2lets is the result of mapping the EMI2 architecture into a
software development platform devised to enable AmI
scenarios. This platform is specially suited for active
interaction mechanisms. However, it has been designed so
that passive mechanisms may be incorporated in the future.

EMI2lets is a development platform for AmI which
addresses the intelligent discovery and interaction among
EMI2Objects and EMI2Proxies. EMI2lets follows a Jini-like
mechanism by which once a service is discovered, a proxy of
it (an EMI2let) is downloaded into the user’s device
(EMI2Proxy). An EMI2let is a mobile component transferred
from a smart object (EMI2Object) to a nearby handheld
device, which usually offers a graphical interface for the user
to interact with its associated smart object.

The EMI2lets platform addresses three main aspects:
• Mobility, seamlessly to the user it encounters all the

services available as he moves and selects the best possible
mechanism to communicate with them. In other words, the
EMI2let platform ensures that an EMI2Proxy is always
using the communication means with best trade-off
between performance and cost. For example, if Wi-Fi and
Bluetooth are available, the former is chosen, however if
GPRS/UMTS and Bluetooth are available, the latter is
chosen.

• Interoperability, the EMI2lets, i.e. the software
components downloaded from EMI2Objects to
EMI2Proxies, are agnostic of the target device type, e.g.
PC, a PDA or a mobile phone.

• AmI is the application domain that has driven the design of
EMI2lets. This platform provides the infrastructure and
software tools required to develop and deploy smart
objects and their controlling proxies.
The objectives set for the design and implementation of

the EMI2lets platform are:
• Transform mobile devices (mobile phones and PDAs) into

universal remote controllers of smart objects located in
AmI environments.

• Enable both local (Bluetooth, Wi-Fi) and global access
(GPRS/UMTS) to interact with the smart objects in AmI
environments, seamlessly adapting to the most suitable
underlying communication mechanisms.

• Develop middleware independent of a particular discovery
or interaction mechanism. Abstract the programmer from
the several available discovery (Bluetooth SDP or wireless
UPnP discovery) and interaction mechanisms (RPC or
publish/subscribe). Likewise, allow this middleware to
easily adapt to newly emerging discovery (RFID) and
interactions means.

• Utilise commonly available hardware and software
features in mobile devices, without demanding the creation
of proprietary hardware, or software protocols.
Essentially, reuse current infrastructure and integrate it for
its application to the AmI domain.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 1 5

• Generate software representatives (proxies) of smart
objects which can be run in any platform, following a
“write once run in any device type” philosophy. The same
EMI2let should run in a mobile, a PDA or a PC.

Figure 2: EMI2lets Platform.

3.1. The EMI2lets vision

Figure 2 shows a possible deployment of an EMI2let-aware
environment. A group of handheld devices running the
EMI2let Player and hosting the EMI2let runtime can discover
and interact with the software representatives (EMI2lets) of
surrounding smart objects. A smart object may be equipped
with enough hardware resources to host an EMI2let Server, or
alternatively a group of EMI2lets associated to different smart
objects may all be hosted within a standalone EMI2let Server.

The EMI2let Server acts as a repository of smart objects.
It publishes the services offered by the hosted objects,
transfers them on demand to the requesting EMI2let Players,
and, optionally, acts as running environment for the EMI2let
server-side facets.

Some EMI2lets may directly communicate with their
associated smart objects in order to issue adaptation
commands. However, often specialised software may need to
be developed which is far too complex to be implemented in
the embedded hardware with which a smart object may be
augmented. For those cases, it will be more convenient to
delegate those cumbersome computing tasks to the server-side
(back-end) counterpart of an EMI2let. The EMI2let on the
hand-held device will communicate with its server-side
counterpart in the EMI2let Server by means of the
EMI2Protocol. For example, a light-controlling EMI2let could
communicate with its EMI2let server-side, which would issue
X10 commands over the power line to switch on the
associated lamps (smart objects).

3.2. Internal architecture

The EMI2lets platform consists of the following elements:
1. A programming framework defining a set of classes and

rules that every EMI2let component must follow.
2. An integrated development environment, named EMI2let

Designer, which simplifies the development of EMI2lets,
both its client- and (optional) server-side.

3. A runtime environment installed on EMI2let-compliant
devices for executing the code downloaded.

4. An EMI2let Player to discover, download, verify and control
the execution of a downloaded EMI2let. A version of the
player is available for each device type which may act as a
host of EMI2lets, e.g. mobile phone, PDA or PC.

5. An EMI2let Server which acts as a repository of EMI2lets
and as a running environment of EMI2lets server-sides.

In order to achieve the EMI2lets design objectives, we
have created the layered software architecture shown in
Figure 3. Programmers only deal with the first layer, the
EMI2let Abstract Programming Model API, to develop the
software counterparts of smart objects. This layer offers a set
of generic interfaces (abstract classes) covering the main
functional blocks of an EMI2let:
1. Discovery interface to undertake the search for available

EMI2lets independently of the discovery mechanisms used
underneath.

2. Interaction interface to issue commands over the services
discovered, independently of the available communication
mechanisms.

3. Presentation interface to specify the graphical controls and
events that represent the look and feel of an EMI2let.

4. Persistency interface to store EMI2let-related data in the
target device.

Figure 3: EMI2lets Internal Architecture.

 The EMI2let Abstract-to-Concrete Mapping layer
translates the invocations over the generic interfaces to the
appropriate mechanisms available both in the mobile device
and the smart objects in the environment. The discovery,
interaction, presentation and persistency abstractions
encapsulate the corresponding concrete models used. They
implement an API for performing service discovery and
interaction, graphical interface generation and data persistency
independent of the actual implementation in the target device.
 On deployment the code generated through these abstract
interfaces is linked to the concrete implementations of the
classes used which are part of the EMI2let runtime in the target
device.

The architecture of the EMI2 framework is very flexible
and extensible because it is based on the concept of plug-in. A
plug-in is simply an implementation of one of the available
abstractions or functional mappings. In the process of
associating a generic invocation to an actual one, the EMI2let
Abstract-to-Concrete Mapping will be responsible of selecting
the actual plug-in (or group of plug-ins) which best matches
the invocation type. For example, if a downloaded EMI2let is
installed on a device where both Bluetooth and GPRS
communication are available, the abstract-to-concrete layer
will have to choose one of those mechanisms to issue
commands. Thus, if the mobile device is still within Bluetooth
range of the EMI2let server-side, then it will translate the
invocation into an EMI2Protocol message transported over
Bluetooth RFCOMM. Otherwise, it will invoke via GPRS the
generic web service (with methods corresponding to the
EMI2Protocol commands) implemented by every EMI2let
server-side. Similarly, if a mobile device is Bluetooth and Wi-

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 1 6

Fi capable, it will use both Bluetooth SDP and UPnP service
discovery to concurrently search for smart objects.

The plug-in selection is made according to an XML
configuration file which states whether a plug-in may be run
concurrently with others of the same type or in isolation. In the
latter case, a priority is assigned to each plug-in which will
determine which one to select when several are available. We
plan to establish a more sophisticated plug-in configuration
model in future work.

With regards to the presentation abstraction, we have
defined a minimum set of graphical controls with which we
can generate the graphical interface of an EMI2let. Some
examples of the classes defined are: EMI2Panel,
EMI2Button or EMI2TextBox. This enables us to create
EMI2let graphical interfaces which are agnostic of the target
mobile device. For instance, when a programmer creates an
EMI2Button, it is translated into a button control in a PC or
a PDA, but into a menu option in a mobile phone. Still, with
the help of the EMI2let Designer (see Figure 4) we can
rearrange the layout of the graphical controls of an EMI2let for
each of the three target device types supported: PC, PDA and
mobile phone. The EMI2let Designer also generates the source
code templates for an EMI2let and its server-side counterpart,
which can then be edited and compiled to generate the EMI2let
binaries ready to be discovered and downloaded.

Figure 4: EMI2let Designer.

3.3. Implementation details

The use of reflection is paramount in the EMI2lets platform. It
enables an EMI2let Player to verify that the code arriving as
part of an EMI2let complies with the EMI2lets framework, and
most importantly, is a piece of code which can be trusted.
Every EMI2let downloaded is signed with an MD5 checksum
encrypted by a private key only shared by the EMI2let
designer and player.

After verification, the player can start the EMI2let by
invoking the methods defined in the EMI2let base class,
inherited by every EMI2let. The methods defined by this class
closely resemble to the ones provided by a J2ME [3] MIDlet
class:
• start, starts or resumes the execution of a downloaded

EMI2let.
• pause, pauses its execution.
• destroy, destroys it.

In addition, the EMI2let class includes some EMI2lets-
specific methods such as:
• getUUID, returns the unique identifier of an EMI2let.
• setProperty/getProperty, sets or gets the

properties associated to a EMI2let. For instance, the
EMI2let.Durable property is set to true when an
EMI2let has to be cached in the player after its execution.
Thus, it can be executed again in the future. Otherwise, an
EMI2let is wiped out from the Player either when its
execution is completed or it is out of range, cannot access,
the EMI2Object it represents.

• notifyDisconnected, informs an EMI2let when the
EMI2Object that it controls cannot be accessed any longer.

• getAddresses, enables the EMI2let Player to retrieve
the addresses where an EMI2let server-side is available.
For instance, it may be accessible both through a
Bluetooth address or a URL pointing to a web service.
The first reference implementation of EMI2lets has used

Microsoft .NET, a framework which fully supports reflection
through the System.Reflection namespace. Moreover,
the .NET platform addresses software development for all the
client hardware platforms considered in EMI2lets, i.e. PC,
PDA and mobile phone. The EMI2lets presentation controls
devised have been based on the ones provided by
Compact.NET, the least common multiple.

The most noticeable part of our implementation is the
assembly fusion undertaken at the player side merging the
arriving EMI2let assembly with the EMI2let library installed
in each target device. This library represents the player’s
runtime, i.e. the abstract-to-concrete layer and the interaction,
discovery, presentation and persistency mappings
implementation with their corresponding plug-in modules. In
other words, the code downloaded is linked dynamically (late
bound) with the runtime installed in the target device. The
.NET class System.Reflection.Assembly is heavily
used in this process.

4. An EMI 2let discovery plug-in

A good example of an EMI2let plug-in is the service
discovery mechanism based on the TRIP [16] tag-based
visual identification system which we have developed.

A factor that limits the use of Bluetooth as an underlying
networking technology for publicly accessible mobile services
is that its device discovery process takes a significant
(sometimes unbearable) time. The discovery process in
Bluetooth is divided into two main phases: (1) device
discovery, i.e. what other devices are accessible via
Bluetooth, and (2) service discovery, i.e. what services are
offered by the discovered devices. In an error-free
environment, the device discovery phase must last for 10.24s
if it is to discover all the devices [1].

In order to speed up service discovery, we have devised a
tag-based content/service selection mechanism, which
bypasses the slow Bluetooth device discovery process. Our
approach is inspired by the work of [17].

The TRIP visual tags are circular barcodes (ringcodes)
with 4 data-rings and 20 sectors. A visual tag, large enough to
be detected by a mobile device tag reading software, is shown
in Figure 5. The ringcode is divided into: (1) one sync-sector
used to specify the beginning of the data encoded in a tag, (2)
two checksum-sectors used to encode an 8-bit checksum,
which detects decoding errors and corrects three bit errors,
and (3) seventeen data-sectors which encode 66 bits of
information.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 1 7

The information in a TRIP tag is encoded in anti-
clockwise fashion from the sync sector. Each sector encodes a
hexadecimal digit comprising the values 0 to D. The E
hexadecimal number is only permitted in the sync sector.
Given the 17 data encoding sectors, the range of valid IDs is
from 0 to 1517-1 (98526125335693359375 ≈ 266).

Figure 5: A tag encoding 66 bits of data.

The TRIP tags were designed to work well with the low-
resolution fixed-focal-length cameras found on conventional
CCTV systems. Consequently, they are also very well suited
for the low-quality built-in cameras of mobile devices, as we
suggested in [5]. In fact, our experience shows that the TRIP
ringcodes are more reliably recognized than linear (UPC)
barcodes, which demand far higher image resolutions. TRIP
works reliably with 160x120 pixel images taken at a distance
of 5-30 cms from the tags which label the smart objects in an
environment. We have implemented the TRIP tag reading
software for Compact.NET devices. It achieves 2 fps in a
TSM 500 Pocket PC.

4.1. Encoding EMI2lets’ addresses

We have used TRIP tags to encode the Bluetooth address of
an EMI2let Server and an identifier to select a smart object in
that server. Likewise, we have also used those tags to encode
tiny urls (see http://tinyurl.com) which point to a smart object
in an EMI2let Server. The tiny url server is currently
generating 6 character-long identifiers, whilst we can encode
up to 8 characters. For example, the identifier 8ggaj maps to
the url http://wap.deusto.es. Two bits of a TRIP ringcode are
used to encode an EMI2let address type, 00 for Bluetooth
and 01 for an Internet tiny url. For Bluetooth, 48 bits are
dedicated to encode the BD_ADDRESS of an EMI2let Server,
and the remaining 16 bits to encode a unique identifier for a
specific EMI2let. For Internet, 64 bits are available to encode
a tiny url, containing the tiny url identifier of an EMI2let
server-side.

Noticeably, the TRIP visual tags do not only improve
service discovery but they also serve to make the user more
aware of the smart objects available in the environment.

Figure 6: Parking EMI2let for PDA (left) and PC (right).

5. EMI 2lets applications

The Parking EMI2let, see Figure 6, is a concept application
developed with EMI2lets. It shows how a physical object in an
outdoors space can be augment with AmI features. It is meant
to be deployed in any street parking booth, where we can
purchase tickets to park our car for a limited period of time.
Often, we have to keep returning to the parking place to
renew the ticket so that the local police force does not issue a
fine for parking time expiration. Thanks to the EMI2lets
platform a user could discover, download (from the ticket
booth) and install a parking EMI2let which would help him
solve this situation. With the downloaded EMI2let the user
could purchase parking tickets via Bluetooth every time the
user is in the parking place, and remotely via GPRS when the
EMI2let warns her (at her office) that its parking ticket is
about to expire. This scenario shows the EMI2lets platform
capability to enact an action over a smart object both locally,
while in the environment, or remotely, far away from the
environment. This application is an example of a durable
EMI2let.

Other EMI2lets developed have allowed us to perform as
diverse tasks as ordering a meal in a busy restaurant,
controlling the electronic devices and lights of a room,
offering a spoken bus arrival notification for blind people or
providing subtitles on mobile phones for deaf people
attending a conference.

Figure 7: EMI2let Development and Deployment.

All the EMI2lets developed have followed the
development and deployment cycle shown in Figure 7. As we
can see the EMI2lets platform provides tools to assist the
programmer in the whole development (EMI2let Designer and
EMI2 framework) and deployment (EMI2let Player and
Server) of smart objects, turning the creation of smart spaces
into a much simpler task.

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 1 8

6. Related work

The EMI2lets platform presents some resemblance to the
Smoblets software framework proposed by [18]. Both
frameworks allow the download of software representatives of
objects located in a smart space into a mobile device.
However, Smoblets are thought to operate when they are only
within range of the smart object they represent. On the
contrary, EMI2lets remain at the user’s terminal, even when
he is far away from the smart object. This allows the user to
control that smart object anytime and anywhere, both using
local (Bluetooth, Wi-Fi) and global (GPRS/UMTS)
communication mechanisms. Furthermore, the main
application of Smoblets is to transform mobile devices into
execution platforms for code downloaded from smart items
with limited processing resources, whereas EMI2lets are
mainly thought to transform mobile devices into hosts of
smart object proxies, which simplify their remote control.

The EMI2lets framework’s layered software architecture
has been inspired by the ReMMoC framework [12]. However,
EMI2lets does not only address the service discovery and
interaction issues of mobile context-aware applications. It
also tackles the graphical presentation and persistency aspects
commonly used in those applications. Moreover, as a main
innovation, the code generated for an EMI2let is independent
of the target platform type where it will be run (PC, PDA or
mobile phone). This is due to the fact that our layered
software architecture follows a “write once run in any device
type” philosophy.

Other authors [17] have also used tags (based on our
TRIP tags) to encode addresses of smart objects. Our data
encoding strategy, using the same number of rings as them,
achieves better error correction capabilities (from 2 to 3 bits)
and has a higher encoding capacity (from 63 to 66 bits).

7. Conclusion and fur ther work

This work has described the design and implementation of a
novel reflective middleware which provides universal active
influence capabilities to mobile devices over smart objects,
independently of the objects location. This framework
presents the following features:
• Transforms mobile devices into universal remote

controllers of smart objects.
• Enables both local and global access to those smart

objects, i.e. anywhere and at anytime.
• Independent and extensible to the underlying service

discovery and interaction, graphical representation and
persistence mechanisms.

• Enables AmI using conventional readily-available
hardware and software tools.

• Follows a “write once run in any device type”
development philosophy.

 In future work we want to add more sophisticated service
discovery and context negotiation features between EMI2let
Players and Servers, following the WebProfiles model
described in [11]. In addition, we want to enable the
cooperation of smart objects, for instance, through the creation
of a distributed shared tuple space. Finally, we intend to
incorporate Semantic Web features to our framework, which
may move the user “out of the loop” in the EMI2lets discovery
and execution process, as suggested in [19].

References

[1] (2005) Bluetooth Specification version 1.1,
http://www.bluetooth.com.
[2] (2005) Mobile Developer Center,
http://msdn.microsoft.com/mobility/, Microsoft Coorporation.
[3] (2005) Java 2 Platform, Micro Edition (J2ME),
http://java.sun.com/j2me/, Sun Microsystems, Inc.
[4] (2005) Symbian OS – the mobile operating System,
http://www.symbian.com/, Symbian Ltd.
[5] López de Ipiña D., Vázquez I. and Sainz D. (2005)
Interacting with our Environment through Sentient Mobile
Phones, in Proceedings of IWUC-2005, ICEIS 2005, Miami,
pp. 19-28, ISBN 972-8865-24-4.
[6] Shadbolt N. (2003) Ambient Intelligence, in IEEE
Intelligent Systems, vol. 2, no.3.
[7] Weiser M. (1991) The computer for the twenty-first
century, in Scientific American, vol. 265, no. 3, pp. 94-104.
[8] Hopper, A. (2000) The Clifford Paterson Lecture,
Sentient Computing, in Philosophical Transactions of the
Royal Society London, vol. 358, no. 1773, pp. 2349-2358.
[9] Chorianopoulos K. et al. (2003) Intelligent user
interfaces in the living room, in Proceedings of Iinternational
conference on Intelligent user interfaces, pp. 230–232.
[10] Vázquez, J.I., López de Ipiña, D. (2004) An Interaction
Model for Passively Influencing the Environment, in Adjunct
Proceedings of EUSAI, Eindhoven, The Netherlands.
[11] Vázquez, J.I. and López de Ipiña D. (2005) An HTTP-
based Context Negotiation Model for Realizing the User-
Aware Web, in IWI 2005, Chiba, Japan. May 2005.
[12] Grace P., Blair G. S. and Samuel S. A Reflective
Framework for Discovery and Interaction in Heterogeneous
Mobile Environments, in Mobile Computing and
Communications Review, vol. 9, no. 1, pp. 2-14.
[13] (1999) Arnold K., O’Sullivan B. et al. The Jini
Specification, Addison Wesley.
[14] (2005) The Universal Plug and Play Forum,
http://www.upnp.org/.
[15] Czerwinski S., Zhao B. et al. An architecture for a
Secure Service Discovery Service, in MobiCom’99, August
1999.
[16] López de Ipiña, D., Mendonça P. and Hopper A. (2002)
TRIP: a Low-cost Vision-based Location System for
Ubiquitous Computing, in Personal and Ubiquitous
Computing, vol. 6, no. 3, pp. 206-219.
[17] Scott D. et al. (2005) Using Visual Tags to Bypass
Bluetooth Device Discovery, in ACM Mobile Computing and
Communications Review, vol.9, no.1, pp 41-52.
[18] Siegemund, F. and Krauer T. (2004) Integrating
Handhelds into Environments of Cooperating Smart Everyday
Objects, in Proceedings of the 2nd European Symposium on
Ambient Intelligence. Eindhoven, The Netherlands.
[19] Lassila O. and Adler M. (2003) Semantic Gadgets:
Device and Information Interoperability

