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Abstract 

Mobile devices are mainly used for communication, 
entertainment, and as electronic assistants. However, their 
increasing computational, storage, communicational and 
multimedia capabilities make them suitable for previously 
unexpected scenarios such as Ambient Intelligence (AmI). 
Thus, mobile devices may be used as intermediaries between 
us and the smart objects (everyday objects augmented with 
computational services) in our surroundings. This paper 
describes the design and implementation of a middleware to 
transform mobile devices into universal remote controllers of 
smart objects. 

1. Introduction 

Current PDAs and mobile phones are equipped with 
continuously increasing processing and storage capabilities, 
better and more varied communications mechanisms 
(Bluetooth [1], Wi-Fi, GPRS/UMTS) and increasingly 
capable multimedia facilities. Moreover, they are far more 
easily extensible (Compact.NET [2], J2ME [3] or Symbian 
[4]) than ever before. 

Mobile devices equipped with Bluetooth, built-in 
cameras, barcode or RFID readers transform into sentient 
devices [5], i.e. they are aware of what smart objects are in 
their whereabouts. A smart object is an everyday object or 
device (door, classroom, parking booth) augmented with 
some accessible computational service. Once a mobile device 
discovers a nearby smart object, it can induce changes on its 
behaviour.  

Bearing in mind the technical progress and sentient 
features of last generation mobile devices, it is natural to think 
that they will play a starring role in the context of Ambient 
Intelligence (AmI) [6]. An obvious application will be their 
use as facilitators or intermediaries between us and a smart 
environment. In other words, mobile devices can behave as 
our personal electronic butlers, facilitating and enhancing our 
daily activities, and even acting on our behalf based on our 
profiles or preferences.  

In this paper, we describe the design and implementation 
of EMI2lets (Environment to Mobile Intelligent Interaction 
applets), a software framework to facilitate the development 
and deployment of mobile context-aware applications for AmI 
environments. 

The structure of the paper is as follows. Section 2 
describes EMI2, a software architecture modelling AmI.  
Section 3 introduces the EMI2lets platform, a partial 
materialisation of the EMI2 architecture, which simplifies 
both the creation of software representatives for everyday 
objects and their controlling proxies deployed in mobile 
devices. Section 4 proposes a novel mechanism to discover 
smart objects based on visual tags used in EMI2lets. Section 5 
lists some interesting applications produced with the EMI2lets 

platform. Section 6 mentions some related work. Finally, 
section 7 offers some conclusions and suggests further work.  

2. EMI 2: an AmI  architecture 

Regardless of the continuous progress in the research topics 
which contribute to the AmI vision, namely Ubiquitous 
Computing [7], context-awareness [8] or intelligent user 
interfaces [9], we are still far away from its materialisation. 
However, the definition of suitable software architectures and 
frameworks specially catered for AmI may be a good starting 
point. The EMI2 (Environment to Mobile Intelligent 
Interaction) architecture is our proposed solution.  

EMI2 defines a multi-agent software architecture, where 
agents of different types, modelling the different roles played 
by entities in AmI, communicate and cooperate to fulfil a 
common goal, i.e. to enhance and facilitate the user 
interactions with her smart environment. 

 

Figure 1: The EMI2 Architecture. 
 
We understand by smart environment a location, either 

indoors or outdoors, where the objects present within (smart 
objects) are augmented with computing services. For instance, 
a cinema may be enhanced with a mobile phone locally 
accessible (Bluetooth) ticket booking service, so preventing 
the user from long queuing to purchase tickets. Similarly, the 
door of our office may be augmented with an access control 
service which demands a user passing by to enter a PIN in her 
mobile to be given access.  

Figure 1 depicts the main components of the EMI2 
architecture. We distinguish three main types of agents: 
• EMI2Proxy: is an agent representing the user, which runs 

on the user’s mobile device (PDA or mobile phone). It acts 
on behalf of the user, adapting/controlling the environment 
for him, both explicitly, under the user’s control, or 
implicitly, on its own judgement based on the profiles, 
preferences and previous interactions of the user with the 
environment. 

• EMI2Object: is an agent representing any device or 
physical object (e.g. vending machine, door, ticket box) 
within a smart environment augmented with computational 
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services, i.e. the capacity to adapt its behaviour in 
response to ambient conditions or user commands. An 
EMI2Object cooperates to achieve its goals with other 
EMI2 agents. 

• EMI2BehaviourRepository: is an agent where knowledge 
and intelligence are combined to support sensible 
adaptation. EMI2Objects may require the assistance of an 
external EMI2BehaviourRepository to coordinate their 
own adaptation according to the user’s preferences, 
behaviour patterns or even the explicit commands received 
from an EMI2Proxy. The user’s mobile device can also be 
powered with an internal EMI2BehaviourRepository 
loaded with personal information and profiles in order to 
minimize the interaction with the owner, i.e. adopting 
implicit adaptation. 

2.1. Active and passive mechanisms 

A concrete agent can influence the environment, and thus, its 
constituent agents’ state, via active (explicit interaction) or 
passive (implicit interaction) methods.  

Active methods are those in which the agent explicitly 
commands other agents to change their state or perform an 
action. For example, when a user enters a building, a sensor 
identifies him and commands the lift to be ready at the ground 
floor. When the user stands in front of his office door his 
mobile phone commands the electric lock to open. Active 
methods can be implemented with any well-known distributed 
computing technology capable of issuing commands. These 
commands will be transported in a local context by bearers 
such as Bluetooth or Wi-Fi and in a global context by 
GPRS/UMTS.  

Passive methods are those in which an agent disseminates 
certain information (profiles, preferences), expecting that 
other agents change their state or perform an action at their 
discretion to create a more adapted environment. Using 
passive methods an agent does not command the target agents 
to do anything concrete, it simply publishes/broadcasts 
information preferences expecting the others to react 
changing their state in a positive way. Passive mechanisms are 
less intrusive than active methods, but they are less 
predictable and significantly more complex to implement. 

In this paper we concentrate on the design and 
implementation of a middleware to provide universal active 
influence capabilities to our mobile devices over the 
surrounding smart objects in our environment. We have 
tackled the issue of passive influence over smart objects in 
previous work [10]. 

2.2. The Need for  an Active Influence M iddleware 

The minimum requirements a middleware for active influence 
must address are: (1) a mechanism to discover through ad-hoc 
or wireless networking the computing services made available 
by surrounding smart objects, and (2) a mechanism to interact 
with those discovered services, so that the objects they 
represent adapt to the user’s preferences and commands.  

The current state of the art in discovery and interaction 
platforms falls into three categories [12]. Firstly, solutions in 
which discovery protocols are supported by mobile code, e.g. 
Jini [13]. After discovery, the service (either a proxy or the full 
service) is downloaded onto the mobile device where it then 
operates. Secondly, solutions where the discovery protocols 
are integrated with specific interaction protocols, which are 
used to invoke the service after the service has been 
discovered. A good example of this is Universal Plug and Play 

(UPnP) [14]. Finally, there are interaction independent 
discovery protocols such as Service Location Protocol [15].  

Once a service is discovered one of the following 
communication mechanisms is normally used: remote method 
invocation, publish-subscribe or asynchronous messaging. For 
the purpose of this work we will concentrate on the remote 
method invocation paradigm, since it accommodates to the 
most popular mechanisms for distributed computing such as 
CORBA or Web Services.  

3. The EMI 2lets platform 

EMI2lets is the result of mapping the EMI2 architecture into a 
software development platform devised to enable AmI 
scenarios. This platform is specially suited for active 
interaction mechanisms. However, it has been designed so 
that passive mechanisms may be incorporated in the future.  

EMI2lets is a development platform for AmI which 
addresses the intelligent discovery and interaction among 
EMI2Objects and EMI2Proxies. EMI2lets follows a Jini-like 
mechanism by which once a service is discovered, a proxy of 
it (an EMI2let) is downloaded into the user’s device 
(EMI2Proxy). An EMI2let is a mobile component transferred 
from a smart object (EMI2Object) to a nearby handheld 
device, which usually offers a graphical interface for the user 
to interact with its associated smart object.  

The EMI2lets platform addresses three main aspects:  
• Mobility, seamlessly to the user it encounters all the 

services available as he moves and selects the best possible 
mechanism to communicate with them. In other words, the 
EMI2let platform ensures that an EMI2Proxy is always 
using the communication means with best trade-off 
between performance and cost. For example, if Wi-Fi and 
Bluetooth are available, the former is chosen, however if 
GPRS/UMTS and Bluetooth are available, the latter is 
chosen.  

• Interoperability, the EMI2lets, i.e. the software 
components downloaded from EMI2Objects to 
EMI2Proxies, are agnostic of the target device type, e.g. 
PC, a PDA or a mobile phone. 

• AmI is the application domain that has driven the design of 
EMI2lets. This platform provides the infrastructure and 
software tools required to develop and deploy smart 
objects and their controlling proxies.  
The objectives set for the design and implementation of 

the EMI2lets platform are: 
• Transform mobile devices (mobile phones and PDAs) into 

universal remote controllers of smart objects located in 
AmI environments. 

• Enable both local (Bluetooth, Wi-Fi) and global access 
(GPRS/UMTS) to interact with the smart objects in AmI 
environments, seamlessly adapting to the most suitable 
underlying communication mechanisms. 

• Develop middleware independent of a particular discovery 
or interaction mechanism. Abstract the programmer from 
the several available discovery (Bluetooth SDP or wireless 
UPnP discovery) and interaction mechanisms (RPC or 
publish/subscribe). Likewise, allow this middleware to 
easily adapt to newly emerging discovery (RFID) and 
interactions means. 

• Utilise commonly available hardware and software 
features in mobile devices, without demanding the creation 
of proprietary hardware, or software protocols.  
Essentially, reuse current infrastructure and integrate it for 
its application to the AmI domain.  
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• Generate software representatives (proxies) of smart 
objects which can be run in any platform, following a 
“write once run in any device type” philosophy. The same 
EMI2let should run in a mobile, a PDA or a PC. 

 

 
Figure 2: EMI2lets Platform. 

3.1. The EMI2lets vision 

Figure 2 shows a possible deployment of an EMI2let-aware 
environment. A group of handheld devices running the 
EMI2let Player and hosting the EMI2let runtime can discover 
and interact with the software representatives (EMI2lets) of 
surrounding smart objects. A smart object may be equipped 
with enough hardware resources to host an EMI2let Server, or 
alternatively a group of EMI2lets associated to different smart 
objects may all be hosted within a standalone EMI2let Server.  

The EMI2let Server acts as a repository of smart objects. 
It publishes the services offered by the hosted objects, 
transfers them on demand to the requesting EMI2let Players, 
and, optionally, acts as running environment for the EMI2let 
server-side facets. 

Some EMI2lets may directly communicate with their 
associated smart objects in order to issue adaptation 
commands. However, often specialised software may need to 
be developed which is far too complex to be implemented in 
the embedded hardware with which a smart object may be 
augmented. For those cases, it will be more convenient to 
delegate those cumbersome computing tasks to the server-side 
(back-end) counterpart of an EMI2let. The EMI2let on the 
hand-held device will communicate with its server-side 
counterpart in the EMI2let Server by means of the 
EMI2Protocol. For example, a light-controlling EMI2let could 
communicate with its EMI2let server-side, which would issue 
X10 commands over the power line to switch on the 
associated lamps (smart objects). 

3.2. Internal architecture 

The EMI2lets platform consists of the following elements: 
1. A programming framework defining a set of classes and 

rules that every EMI2let component must follow. 
2. An integrated development environment, named EMI2let 

Designer, which simplifies the development of EMI2lets, 
both its client- and (optional) server-side. 

3. A runtime environment installed on EMI2let-compliant 
devices for executing the code downloaded.  

4. An EMI2let Player to discover, download, verify and control 
the execution of a downloaded EMI2let. A version of the 
player is available for each device type which may act as a 
host of EMI2lets, e.g. mobile phone, PDA or PC. 

5. An EMI2let Server which acts as a repository of EMI2lets 
and as a running environment of EMI2lets server-sides. 

In order to achieve the EMI2lets design objectives, we 
have created the layered software architecture shown in 
Figure 3. Programmers only deal with the first layer, the 
EMI2let Abstract Programming Model API, to develop the 
software counterparts of smart objects. This layer offers a set 
of generic interfaces (abstract classes) covering the main 
functional blocks of an EMI2let: 
1. Discovery interface to undertake the search for available 

EMI2lets independently of the discovery mechanisms used 
underneath.  

2. Interaction interface to issue commands over the services 
discovered, independently of the available communication 
mechanisms.  

3. Presentation interface to specify the graphical controls and 
events that represent the look and feel of an EMI2let. 

4. Persistency interface to store EMI2let-related data in the 
target device. 

 

 
Figure 3: EMI2lets Internal Architecture. 

 The EMI2let Abstract-to-Concrete Mapping layer 
translates the invocations over the generic interfaces to the 
appropriate mechanisms available both in the mobile device 
and the smart objects in the environment. The discovery, 
interaction, presentation and persistency abstractions 
encapsulate the corresponding concrete models used. They 
implement an API for performing service discovery and 
interaction, graphical interface generation and data persistency 
independent of the actual implementation in the target device. 
 On deployment the code generated through these abstract 
interfaces is linked to the concrete implementations of the 
classes used which are part of the EMI2let runtime in the target 
device. 

The architecture of the EMI2 framework is very flexible 
and extensible because it is based on the concept of plug-in. A 
plug-in is simply an implementation of one of the available 
abstractions or functional mappings. In the process of 
associating a generic invocation to an actual one, the EMI2let 
Abstract-to-Concrete Mapping will be responsible of selecting 
the actual plug-in (or group of plug-ins) which best matches 
the invocation type. For example, if a downloaded EMI2let is 
installed on a device where both Bluetooth and GPRS 
communication are available, the abstract-to-concrete layer 
will have to choose one of those mechanisms to issue 
commands. Thus, if the mobile device is still within Bluetooth 
range of the EMI2let server-side, then it will translate the 
invocation into an EMI2Protocol message transported over 
Bluetooth RFCOMM. Otherwise, it will invoke via GPRS the 
generic web service (with methods corresponding to the 
EMI2Protocol commands) implemented by every EMI2let 
server-side. Similarly, if a mobile device is Bluetooth and Wi-
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Fi capable, it will use both Bluetooth SDP and UPnP service 
discovery to concurrently search for smart objects.  

The plug-in selection is made according to an XML 
configuration file which states whether a plug-in may be run 
concurrently with others of the same type or in isolation. In the 
latter case, a priority is assigned to each plug-in which will 
determine which one to select when several are available. We 
plan to establish a more sophisticated plug-in configuration 
model in future work. 

With regards to the presentation abstraction, we have 
defined a minimum set of graphical controls with which we 
can generate the graphical interface of an EMI2let. Some 
examples of the classes defined are: EMI2Panel, 
EMI2Button or EMI2TextBox. This enables us to create 
EMI2let graphical interfaces which are agnostic of the target 
mobile device. For instance, when a programmer creates an 
EMI2Button, it is translated into a button control in a PC or 
a PDA, but into a menu option in a mobile phone. Still, with 
the help of the EMI2let Designer (see Figure 4) we can 
rearrange the layout of the graphical controls of an EMI2let for 
each of the three target device types supported: PC, PDA and 
mobile phone. The EMI2let Designer also generates the source 
code templates for an EMI2let and its server-side counterpart, 
which can then be edited and compiled to generate the EMI2let 
binaries ready to be discovered and downloaded. 

 

 
Figure 4: EMI2let Designer. 

3.3. Implementation details 

The use of reflection is paramount in the EMI2lets platform. It 
enables an EMI2let Player to verify that the code arriving as 
part of an EMI2let complies with the EMI2lets framework, and 
most importantly, is a piece of code which can be trusted. 
Every EMI2let downloaded is signed with an MD5 checksum 
encrypted by a private key only shared by the EMI2let 
designer and player. 

After verification, the player can start the EMI2let by 
invoking the methods defined in the EMI2let base class, 
inherited by every EMI2let. The methods defined by this class 
closely resemble to the ones provided by a J2ME [3] MIDlet 
class:  
• start, starts or resumes the execution of a downloaded 

EMI2let. 
• pause, pauses its execution. 
• destroy, destroys it. 

In addition, the EMI2let class includes some EMI2lets-
specific methods such as:  
• getUUID, returns the unique identifier of an EMI2let.  
• setProperty/getProperty, sets or gets the 

properties associated to a EMI2let. For instance, the 
EMI2let.Durable property is set to true when an 
EMI2let has to be cached in the player after its execution. 
Thus, it can be executed again in the future. Otherwise, an 
EMI2let is wiped out from the Player either when its 
execution is completed or it is out of range, cannot access, 
the EMI2Object it represents. 

• notifyDisconnected, informs an EMI2let when the 
EMI2Object that it controls cannot be accessed any longer.  

• getAddresses, enables the EMI2let Player to retrieve 
the addresses where an EMI2let server-side is available. 
For instance, it may be accessible both through a 
Bluetooth address or a URL pointing to a web service.  
The first reference implementation of EMI2lets has used 

Microsoft .NET, a framework which fully supports reflection 
through the System.Reflection namespace. Moreover, 
the .NET platform addresses software development for all the 
client hardware platforms considered in EMI2lets, i.e. PC, 
PDA and mobile phone. The EMI2lets presentation controls 
devised have been based on the ones provided by 
Compact.NET, the least common multiple.  

The most noticeable part of our implementation is the 
assembly fusion undertaken at the player side merging the 
arriving EMI2let assembly with the EMI2let library installed 
in each target device. This library represents the player’s 
runtime, i.e. the abstract-to-concrete layer and the interaction, 
discovery, presentation and persistency mappings 
implementation with their corresponding plug-in modules. In 
other words, the code downloaded is linked dynamically (late 
bound) with the runtime installed in the target device. The 
.NET class System.Reflection.Assembly is heavily 
used in this process. 

4. An EMI 2let discovery plug-in 

A good example of an EMI2let plug-in is the service 
discovery mechanism based on the TRIP [16] tag-based 
visual identification system which we have developed.  

A factor that limits the use of Bluetooth as an underlying 
networking technology for publicly accessible mobile services 
is that its device discovery process takes a significant 
(sometimes unbearable) time. The discovery process in 
Bluetooth is divided into two main phases: (1) device 
discovery, i.e. what other devices are accessible via 
Bluetooth, and (2) service discovery, i.e. what services are 
offered by the discovered devices. In an error-free 
environment, the device discovery phase must last for 10.24s 
if it is to discover all the devices [1].  

In order to speed up service discovery, we have devised a 
tag-based content/service selection mechanism, which 
bypasses the slow Bluetooth device discovery process. Our 
approach is inspired by the work of [17].  

The TRIP visual tags are circular barcodes (ringcodes) 
with 4 data-rings and 20 sectors. A visual tag, large enough to 
be detected by a mobile device tag reading software, is shown 
in Figure 5. The ringcode is divided into: (1) one sync-sector 
used to specify the beginning of the data encoded in a tag, (2) 
two checksum-sectors used to encode an 8-bit checksum, 
which detects decoding errors and corrects three bit errors, 
and (3) seventeen data-sectors which encode 66 bits of 
information.  
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The information in a TRIP tag is encoded in anti-
clockwise fashion from the sync sector. Each sector encodes a 
hexadecimal digit comprising the values 0 to D. The E 
hexadecimal number is only permitted in the sync sector. 
Given the 17 data encoding sectors, the range of valid IDs is 
from 0 to 1517-1 (98526125335693359375 ≈ 266). 

 

Figure 5: A tag encoding 66 bits of data. 

The TRIP tags were designed to work well with the low-
resolution fixed-focal-length cameras found on conventional 
CCTV systems. Consequently, they are also very well suited 
for the low-quality built-in cameras of mobile devices, as we 
suggested in [5]. In fact, our experience shows that the TRIP 
ringcodes are more reliably recognized than linear (UPC) 
barcodes, which demand far higher image resolutions. TRIP 
works reliably with 160x120 pixel images taken at a distance 
of 5-30 cms from the tags which label the smart objects in an 
environment. We have implemented the TRIP tag reading 
software for Compact.NET devices. It achieves 2 fps in a 
TSM 500 Pocket PC.  

4.1. Encoding EMI2lets’  addresses 

We have used TRIP tags to encode the Bluetooth address of 
an EMI2let Server and an identifier to select a smart object in 
that server. Likewise, we have also used those tags to encode 
tiny urls (see http://tinyurl.com) which point to a smart object 
in an EMI2let Server. The tiny url server is currently 
generating 6 character-long identifiers, whilst we can encode 
up to 8 characters. For example, the identifier 8ggaj maps to 
the url http://wap.deusto.es. Two bits of a TRIP ringcode are 
used to encode an EMI2let address type, 00 for Bluetooth 
and 01 for an Internet tiny url. For Bluetooth, 48 bits are 
dedicated to encode the BD_ADDRESS of an EMI2let Server, 
and the remaining 16 bits to encode a unique identifier for a 
specific EMI2let. For Internet, 64 bits are available to encode 
a tiny url, containing the tiny url identifier of an EMI2let 
server-side.  

Noticeably, the TRIP visual tags do not only improve 
service discovery but they also serve to make the user more 
aware of the smart objects available in the environment.  

  

Figure 6: Parking EMI2let for PDA (left) and PC (right). 

5. EMI 2lets applications 

The Parking EMI2let, see Figure 6, is a concept application 
developed with EMI2lets. It shows how a physical object in an 
outdoors space can be augment with AmI features. It is meant 
to be deployed in any street parking booth, where we can 
purchase tickets to park our car for a limited period of time. 
Often, we have to keep returning to the parking place to 
renew the ticket so that the local police force does not issue a 
fine for parking time expiration. Thanks to the EMI2lets 
platform a user could discover, download (from the ticket 
booth) and install a parking EMI2let which would help him 
solve this situation. With the downloaded EMI2let the user 
could purchase parking tickets via Bluetooth every time the 
user is in the parking place, and remotely via GPRS when the 
EMI2let warns her (at her office) that its parking ticket is 
about to expire. This scenario shows the EMI2lets platform 
capability to enact an action over a smart object both locally, 
while in the environment, or remotely, far away from the 
environment. This application is an example of a durable 
EMI2let. 

Other EMI2lets developed have allowed us to perform as 
diverse tasks as ordering a meal in a busy restaurant, 
controlling the electronic devices and lights of a room, 
offering a spoken bus arrival notification for blind people or 
providing subtitles on mobile phones for deaf people 
attending a conference. 

 

 
Figure 7: EMI2let Development and Deployment. 

All the EMI2lets developed have followed the 
development and deployment cycle shown in Figure 7. As we 
can see the EMI2lets platform provides tools to assist the 
programmer in the whole development (EMI2let Designer and 
EMI2 framework) and deployment (EMI2let Player and 
Server) of smart objects, turning the creation of smart spaces 
into a much simpler task.  
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6. Related work 

The EMI2lets platform presents some resemblance to the 
Smoblets software framework proposed by [18]. Both 
frameworks allow the download of software representatives of 
objects located in a smart space into a mobile device. 
However, Smoblets are thought to operate when they are only 
within range of the smart object they represent. On the 
contrary, EMI2lets remain at the user’s terminal, even when 
he is far away from the smart object. This allows the user to 
control that smart object anytime and anywhere, both using 
local (Bluetooth, Wi-Fi) and global (GPRS/UMTS) 
communication mechanisms. Furthermore, the main 
application of Smoblets is to transform mobile devices into 
execution platforms for code downloaded from smart items 
with limited processing resources, whereas EMI2lets are 
mainly thought to transform mobile devices into hosts of 
smart object proxies, which simplify their remote control.  

The EMI2lets framework’s layered software architecture 
has been inspired by the ReMMoC framework [12]. However, 
EMI2lets does not only address the service discovery and 
interaction issues of mobile context-aware applications. It 
also tackles the graphical presentation and persistency aspects 
commonly used in those applications. Moreover, as a main 
innovation, the code generated for an EMI2let is independent 
of the target platform type where it will be run (PC, PDA or 
mobile phone). This is due to the fact that our layered 
software architecture follows a “write once run in any device 
type” philosophy. 

Other authors [17] have also used tags (based on our 
TRIP tags) to encode addresses of smart objects. Our data 
encoding strategy, using the same number of rings as them, 
achieves better error correction capabilities (from 2 to 3 bits) 
and has a higher encoding capacity (from 63 to 66 bits).   

7. Conclusion and fur ther  work 

This work has described the design and implementation of a 
novel reflective middleware which provides universal active 
influence capabilities to mobile devices over smart objects, 
independently of the objects location. This framework 
presents the following features: 
• Transforms mobile devices into universal remote 

controllers of smart objects. 
• Enables both local and global access to those smart 

objects, i.e. anywhere and at anytime. 
• Independent and extensible to the underlying service 

discovery and interaction, graphical representation and 
persistence mechanisms.  

• Enables AmI using conventional readily-available 
hardware and software tools. 

• Follows a “write once run in any device type” 
development philosophy. 

 In future work we want to add more sophisticated service 
discovery and context negotiation features between EMI2let 
Players and Servers, following the WebProfiles model 
described in [11].  In addition, we want to enable the 
cooperation of smart objects, for instance, through the creation 
of a distributed shared tuple space. Finally, we intend to 
incorporate Semantic Web features to our framework, which 
may move the user “out of the loop” in the EMI2lets discovery 
and execution process, as suggested in [19]. 
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