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Abstract 
A middleware for real ad-hoc cooperation of distributed 
device ensembles must support self-organization of its 
components. Self-organization means that the independence of 
the ensembles’ components is ensured, that the ensemble is 
dynamically extensible by new components and that real 
distributed implementation is possible. Furthermore the data-
flow of messages within the ensemble may not be statically 
determined. This article presents the distributed 
implementation of the SodaPop model for distributed device 
ensembles of physical heterogeneous devices as well as the 
distributed handling of conflict resolution strategies that 
guarantee the data-flow even if there are competing 
components. The proposed approach relies on the principle of 
device representatives. Here physical devices host their 
components and disburden them from communication and 
service composition strategies. 

1. Introduction 
Rather popular scenarios for Ambient Intelligence [1, 2] 
illustrate the visions of smart conference rooms or smart living 
rooms where devices are able to cooperate in an ad-hoc 
fashion. Well-established examples are the Easy Living 
project from Microsoft [3], the Interactive Workspaces Project 
[4] from Stanford University or the Intelligent Classroom [5] 
from Northwestern University. But those smart environments 
from the various research labs are usually assembled from 
devices and components whose functionality is known to the 
developers. Furthermore, in systems with distributed devices, 
the data flow from device to device is determined for every 
use case. Consequently the intelligence of Ambient 
Intelligence prototypes and demonstrators is carefully 
handcrafted.  

This is not possible for dynamic scenarios, where people 
come together in a meeting room for example, each of the 
participants bringing with own personal devices, or where 
people are buying new devices for extending their existing 
entertainment device ensembles. A scenario that outlines the 
vision of intelligent environments that were built up ad-hoc by 
cooperating devices is the example of an ad-hoc meeting 
where People meet at a perfectly average room. All of the 
participants bring their own notebook computers, at least one 
brings a projector and the room has some light controls. So it 
would be possible for this spontaneous ensemble to provide 
the same assistance as a fixed conference room. This kind of 
Ambient Intelligence requires more than setting up a central 
control application in advance. It requires the ability of the 
devices to autonomously configure themselves into a 
coherently acting ensemble that is fully distributed.  

Johanson from Stanford University also points out [4] that 
“users should only have to plug in a device or bring it into a 

physical space for it to become part of the corresponding 
software infrastructure. User configuration should be simple 
and prompted by the space. …The logical extension of this is 
to allow ad hoc interactive workspaces to form wherever a 
group of devices are gathered.” 

Obviously software infrastructures are needed that are 
distributed implemented and that allow a true self-
organization of the device ensembles that are connected in an 
ad-hoc fashion. In order to take a step ahead to this vision the 
project DynAMITE [6] develops a decentralized middleware 
for self-organizing device ensembles on basis of the 
middleware model SodaPop [7, 8]. This article specifies the 
distributed implementation of this middleware concept. 
Therefore the next chapter reviews the requirements for self-
organizing ensembles that come up while looking at the 
underlying scenarios. In Section 3 the core concepts of 
SodaPop are illustrated (for a detailed specification please 
refer to [7, 8]). SodaPop introduces a solution proposal for a 
software infrastructure that supports such heterogeneous ad-
hoc device ensembles. Section 4 then outlines the distributed 
implementation of our approach and explains conflict 
resolution mechanisms among distributed devices with the 
principle of device representatives. After some explanations 
about the underlying communication infrastructure and the 
reflection of the related work this article ends with a 
discussion and an outline of our next steps. 

2. Requirements 
The challenge of self-organization as indicated in the 
introduction of this article distinguishes two different aspects: 
o Architectonic Integration: this refers to the integration of 

a (new) device into the communication patters of an 
existing device ensemble. This refers also to the ad-hoc 
assembly of a device ensemble from heterogeneous 
standalone devices. 

o Operational Integration: this describes the aspect of 
making new functionalities that are provided by a (new) 
device available to the user. 

 
Obviously operational integration means a form of 

service discovery transparent to all devices. It can be realized 
based on an explicit modeling of the semantics of device 
operations as precondition / effect rules that have to be defined 
over suitable environment ontology (see [9] for a detailed 
reflection on this topic). One has to bear in mind that 
operational integration means more than to make a graphical 
user interface available for the user like the approaches in Jini 
[10] or HAVi [11].  

This article concentrates on the aspect of architectonic 
integration. While looking at typical scenarios where devices 
have to cooperate in an ad-hoc fashion one identifies (see [7, 
8] for more details) that each device should also be able to act 
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stand-alone and has to be independent. Additionally 
distributed implementation has to be supported to guarantee 
that there may not be any kind of central component (because 
a central controller is a contradiction itself to the demand of 
ad-hoc self-organization) and the devices should be 
exchangeable. Furthermore, transparent service arbitration 
should be provided. Ambient Intelligence can be identified 
(see [7, 8] for more details): 

Only if all requirements are met intuitive scenarios like the 
”Plug and Play” of new devices into an existing device 
ensemble, and the build-up of a device ensemble in an ad-hoc 
fashion (with no discussion where a central router should be 
started) is possible. The requirement that devices should be 
able to work stand-alone corresponds to the user’s experiences 
and expectations of the every day usage of conventional 
devices. 

3. Principles of the SodaPop model 
This section should outline the core ideas of the SodaPop 
model (for details we refer to [7, 8]). Each device that is able 
to interact with users (like TV sets by buttons or remote 
controls) and that is able to change the user’s environment (by 
rendering a medium for instance) possesses a kind of event 
processing. Figure 1 outlines possible processing stages and a 
specific event processing pipeline. Usually devices have a user 
interface that translates physical user interactions to events. 
An Interpreter component then is responsible for determining 
the appropriate goals, which are translated into function calls 
by a Control Application. The Actuators then are physically 
executing this function calls [12]. 
 

 
Figure 1: The internal data-flow of a standard device. 

 

 
Figure 2: The devices share the interfaces after they 
are extended across them. 

 
If some devices are plugged together (see figure 2) the 
interface between the individual processing stages can be 
extended across multiple devices. That means, after turning 
the private interfaces between the processing stages in a 
device into public channels, Interpreter components from one 

device are able to ”see” events from other devices. Or the 
Control Application of one device is able to interpret goals 
that are made by other devices.  

Obviously if all components are able to “see” the 
messages of the other components that are subscribed to a 
channel, some conflicts will come up which component(s) are 
allowed to process the message. Those conflicts of competing 
components have to be solved by conflict resolution 
strategies, which are part of the channels message handling 
capabilities. The procedure of conflict handling within a 
channel is illustrated by figure 3. In a nutshell, SodaPop 
differs between two types of components: 

Channels read single messages and map them to 
(multiple) messages. Therefore conflict resolution strategies 
are used that are evaluating the channel subscribers’ utility 
value functions, decomposing the messages and delegating 
them to the receiver components (see figure 3). How a channel 
determines the effective message decomposition and how it 
chooses the set of receiving consumers is defined by the 
individual channel’s decomposition strategy (that is eventually 
based on the channel’s ontology).  

Transducers represent the components in figure 1 and 
figure 2. Transducers are able to read one or more messages 
and are able to map them into appropriate output messages 
(e.g. events are mapped into goals). When subscribing to a 
channel, a transducer declares: the set of messages it is able to 
process and how well it is suited for processing certain 
messages. For this reason the transducer makes its utility value 
function available to the channel(s) it is connected to. 

 

 
Figure 3: The basic mechanism of conflict resolution 
strategies evaluates the consumer utility values, 
decomposes the message and delegates it to the 
receiver components. 

After a common set of channels as well as appropriate 
conflict resolution mechanisms are identified an 
architectonic integration of devices and components could 
be achieved by means of the SodaPop principles. In [12] a 
Generic Topology for Ambient Intelligence is identified. It 
consists of four levels of components (Interaction, 
Interpretation, Strategy Assistants, and Actors, see also 
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figure 1 and figure 2). Also some possible conflict 
resolution strategies within the domain of home 
entertainment and the domain of lecture rooms are 
described A conflict resolution strategy that decomposes 
single messages with amodal information into multiple 
messages with modal information (e.g. system output 
information that is split up into graphical and voice output 
in dependence of the abilities of the connected consumer 
components) is explained in detail in [13]. 

4. Distributed Implementation 
In order to make the distributed implementation of the self-
organizing middleware model SodaPop possible, it might 
again be helpful to look inside the physical devices that should 
be supported. For devices like the one that is illustrated in 
figure 1 the implementation seems to be trivial. The User 
Interface sends its events directly to the Interpreter. After that 
the Interpreter forwards its goals to the following Control 
Application. And finally the Control Applications sends the 
functions calls to the Actuator.  

But what will happen if a vendor wants to sell two 
standalone devices in one physical unit? Or in other words: 
How can a physical device be internally managed if it consists 
of two logical devices?  

Now the Interpreter components of both logical devices 
(figure 4 illustrates an example of a combined TV set-DVD 
device) see all events that come from the different User 
Interfaces. Of course it would be reasonable if only one 
Interpreter component infers the user’s goals. And of course if 
later on only one Control Application schedules the 
appropriate functions. In order to provide this the channel has 
to apply the necessary conflict resolution strategies.  

 

 
Figure 4: Two stand-alone devices (left) are combined 
to one physical device that then consists of two logical 
devices (right). 

Obviously the channel is created by its connected transducers 
and thus the participating transducers have to carry out the 
conflict resolution strategy among them. To provide this 
functionality, some principal questions have to be answered:  
o Is it possible to apply conflict resolution strategies 

cooperatively (among the participating transducers)?  
o Or is there a way to choose one transducer that should 

apply the conflict resolution strategy alone?  
 
And furthermore, if it is possible to find solutions at least for 
one of these questions: 
o If the execution of conflict resolution strategies is 

possible in a cooperative way - Will it also be possible to 
apply the found approach across real distributed physical 

devices? That means: Is it possible to find applicable 
methods for parallel processing not only among 
distributed applications but also among distributed 
processors?  

o If one transducer can be chosen to apply exclusively the 
appropriate conflict resolution strategy, will it also be 
able to choose one transducer among distributed physical 
devices? 

 
The scenarios (section 1) and the resulting requirements 

(section 2) demand the independence of each physical device, 
not of each component that runs on these devices. That means 
it is reasonable to increase the granularity from logical 
components (e.g. a User Interface or an Interpreter 
component) to real physical devices (e.g. a TV set that is the 
host for its different components). This is obviously according 
to the user’s expectations. The user wants to combine physical 
devices and not logical components.  

Because the physical device is the smallest entity within 
a device ensemble it can run one instance of a so-called 
SodaPop-Demon. Consequently the SodaPop-Demon hosts all 
different transducers of its physical entity (see figure 5).  

 

 
Figure 5: Each physical device runs one SodaPop-
Demon instance where all logical components, the 
transducers, are connected to. The SodaPop-Demon is 
also the host for the channels that are defined by the 
multiple transducers. 

Once a transducer runs: 
o It connects to the device’s own SodaPop-Demon by 

declaring the descriptions of the channels it wants to 
participate  

o It indicates for each channel, whether it wants to listen to 
channel messages or it wants to write to the channel  

o And it declares the set of messages, it is able to process 
 

If now a User Interface component wants to send an 
event to the channel it is connected to, it will send a message 
to its SodaPop-Demon. The message contains the event itself 
together with some information about the receiver channel and 
the sender itself. After that the SodaPop-Demon contacts all 
transducers that are subscribed as listeners to the 
corresponding channel to evaluate their utility value function 
according to the initial message. After the SodaPop-Demon 
had collected all utility value function results it starts to 
execute the channel’s conflict resolution strategy. Finally the 
SodaPop-Demon delegates the decomposed message(s) to the 
receiver transducer(s). In order to avoid traffic between the 
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transducers and the SodaPop-Demon we differ between static 
and non-static utility value functions. In case a utility value 
function is static, its values are handed over to the SodaPop-
Demon when the transducer starts and connects.  

Thus, the SodaPop-Demon can use its own look-up table 
instead of causing message traffic. In general utility value 
functions are non-static. They are dependent on the current 
state the transducer belongs to when its utility value function 
is evaluated. An example is a rendering component for media 
that already renders a movie. Of course at this moment it will 
raise lower utility values than another rendering component 
whose resources are all available. Some consequences of this 
approach should be mentioned: 
o The channels now turned into virtual entities. 

Consequently a channel descriptor defines the name of a 
logical group to which transducers correspond to 
according to the ontology that is semantically used for 
the communication. Also the channel descriptor defines 
the effective conflict resolution strategy that has to be 
used in case of competing components.  

o Messages between transducers and channels are sent via 
a SodaPop-Demon. A SodaPop-Demon is the container 
for the device’s channels as well as the container for its 
different components and their utility value functions.  

o All strategies that have to be executed to guarantee the 
information flow inside a physical device are applied by 
the SodaPop-Demon of the device.  

 
The consequence that a SodaPop-Demon is obviously a 

central component for each physical device does not limit the 
scenarios and the requirements, because we want to achieve 
plug and play of devices and that device ensembles are able to 
interoperate in an ad-hoc fashion. The fact that each entity of a 
device ensemble (that means each device) runs its own service 
isn’t any limitation at all. 

4.1. The Principle of Device Representatives 

After the introduction of the principles and the functions of the 
SodaPop-Demons that correspond to single devices this 
section explains how the SodaPop-Demons can be used as 
representatives of their device, their channels and their logical 
components in heterogeneous device ensembles.  

Figure 6 illustrates the principles of the distributed 
implementation. The SodaPop-Demons as the representatives 
of their devices’ channels and transducers build up groups 
where peer-to-peer communication is possible (see 4.3). Each 
of the group represents a certain channel. Consequently a 
SodaPop-Demon enters a group when an own transducer 
connects to the corresponding channel, and a SodaPop-Demon 
leaves a channel, when the last own transducer disconnects 
from the corresponding channel. If a group that corresponds to 
a channel does not exist the responsible SodaPop-Demon will 
open up an appropriate group.  

Amongst a group the direct addressing from SodaPop-
Demon to SodaPop-Demon is possible (unicast) as well as 
multicasts from one SodaPop-Demon to all members of a 
group. Therefore only one restriction exists: Each SodaPop-
Demon owns a one-to-one identification number to guarantee 
reliable point-to-point communication (this can be done by 
using individual manufacturer numbers or rather MAC 
numbers). 

 
Figure 6: The SodaPop-Demons of the different 
devices build up three different groups that 
correspond to the three defined channels. The 
different SodaPop-Demons are symbolised by their 
device icons.  

4.2. Decentralized Conflict Handling 

Now the delivering of messages from component to 
component reduces to the challenge to find an appropriate 
SodaPop-Demon that hosts a qualified transducer. Conflict 
resolution mechanisms must be applied by the SodaPop-
Demons that build up the group that corresponds to the 
channel where the message is received. And furthermore the 
SodaPop-Demons as representatives of their transducers take 
part in the competition for messages at the same time. But 
decentralized conflict handling without any central or salient 
group member needs some conventions: 
o Every group member needs the same information: 

SodaPop-Demons announce the number of listener- and 
writer-transducers they represent in the group as well as 
their individual identification number 

o Each SodaPop-Demon that hosts a listener transducer 
(that means a transducer that wants to consume 
messages) must be able to execute the conflict resolution 
strategy that corresponds to the represented channel. The 
reason for this restriction is intuitively understandable: If 
the calculating capacity of a SodaPop-Demon is 
sufficient to host a transducer that can interpret messages 
and infer user goals for instance, it will have also the 
capacity to run substantial strategies. Consequently 
simple sensor devices like RFID marker or motion 
detectors must not provide too much calculating capacity 
because they are only the sources of events and not the 
consumers. 

The communication mechanisms inside a group of SodaPop-
Demons takes place in the following way:  
1. If a transducer sends a message to a channel (e.g. the 

User Interface of the remote control in figure 6) the 
corresponding SodaPop-Demon broadcasts this message 
to the other members of this (channel) group.  

2. After receiving the message each SodaPop-Demon will 
evaluate the utility value functions of its (listener-) 
transducers that are connected to the corresponding 
channel and will collect all utility values.  

3. Then each SodaPop-Demon broadcasts the following 
information to its group participants: 
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o the collection of all utility values of its 
transducers  

o its own identification number  
o a number n between 0 and 1 to declare how 

well it is suited to provide the conflict 
resolution mechanism (Note: if the SodaPop-
Demon owns listener transducers it has to 
provide the necessary ”intelligence” to execute 
the corresponding conflict resolution strategy).  

o and a time T that indicates the length in time 
when the result of the conflict resolution 
strategy at the latest will be broadcasted to the 
other group members. 

4. Each SodaPop-Demon receives the broadcasted 
information of the other SodaPop-Demons of its group 
and thus all group members own all utility values of all 
connected (listener-) transducers.  

5. The SodaPop-Demon that offered the highest number n 
starts to execute the channel’s conflict resolution 
strategy and broadcasts the results to the other group 
member. The results are the decomposed message and 
the identification number(s) of the receiver transducer(s).  

6. Each SodaPop-Demon receives the broadcasted results 
and - in case it hosts one or more of the receiver 
transducers - forwards the decomposed message(s) to its 
transducers. 

 
The process will restart at point 3, if all SodaPop-

Demons offer the number 0 for n; if two or more SodaPop-
Demons offer the same number n - and n is the highest 
number that is offered; or if the time T is elapsed without any 
results of the SodaPop-Demon that should execute the 
conflict resolution strategy (because that could indicate that 
the corresponding SodaPop-Demon has left the group or 
something other unseen had happened). The task to choose 
one SodaPop-Demon to execute the conflict resolution 
strategy is well known as the Leader Election Problem [14].  

4.3. Underlying Communication Infrastructure 

The underlying communication infrastructure for the 
described decentralized middleware has to fulfill the 
following requirements:  
o Ensure peer-to-peer communication without any central 

components (except for applications that could run 
autonomously on each physical device)  

o Ensure the dynamical build-up of groups  
o Ensure unicast and broadcast amongst group members.  
 

In DynAMITE we chose to apply the JXTA-technology 
[15] as well as the UPnP-(Universal Plug and Play)-
technology [16]. Both can provide the necessary peer-to-peer 
communication mechanisms whereas JXTA supplies the 
software engineer with comfortable Java (and C) application 
programming interfaces. In contrast UPnP has a fast 
increasing community and it is expected that UPnP services 
will be provided in many devices in the future. 

5. Related Work 
A middleware for the visions of Ambient Intelligence must 
provide complete decentralized communication among its 
components. Furthermore to provide extensibility and 
exchangeability the middleware must be able to execute 

conflict resolution strategies to guarantee reasonable data-flow 
even if there are competing components. Different 
technologies and approaches face single aspects of the 
mentioned requirements. Jini [10], HAVi [11], JXTA [15] and 
UPnP [16] make the communication between devices from 
different vendors possible. Unfortunately no conflict 
resolution mechanisms - apart from graphical user interfaces - 
are provided. Some agent technologies are well known like 
SRI’s Open Agent Architecture (OAA) [17], the Galaxy 
Communicator Architecture [18] or INCA [19]. Galaxy uses a 
centralized hub-component that owns routing rules that 
determine the data-flow whereas the OAA uses prolog-based 
mechanisms that are located in special meta-agents. That is 
alike the Jaspis framework [20] that uses evaluation agents for 
the evaluation of the quality of possible addressee agents. 
INCA uses a central component for registering components 
and for delivering messages. The abstract system architecture 
of AMIGO [21] recognizes the needs for service discovery 
and service composition strategies – as offered by the 
channels that are transparent for each developer – but each 
component is responsible for the application of such strategies. 
Thus the component developer is responsible for both: the 
implementation of a component that provides certain 
functionalities as well as appropriate service composition 
mechanisms. Consequently the reliability and transparency 
will decrease. The world of agent communication seems to be 
split in two halves. On the one side the peer-to-peer 
communication world, where all components broadcast 
messages or communicate directly by using fixed addresses. 
And on the other side the world with central components 
where hand-crafted routing rules are applied to the 
communication process. In both worlds the dynamic 
extensibility and self-organization of device ensembles seems 
to be difficult. 

6. Current State and Next Steps 
While [7, 8, 12] explain the principles of the SodaPop-model 
for the realization of self-organizing device ensembles and 
identify certain communication patterns and define some 
conflict resolution strategies that make the built-up of device 
ensembles possible, this paper specifies the fully distributed 
implementation of the SodaPop-model. The presented 
distributed implementation abandons any central component 
and bears down the disadvantages of the peer-to-peer world as 
well as of the world with central (routing) components. With 
the approach to define representatives for the multiplicity of 
components of each physical device as one peer and the 
application of conflict resolution mechanisms among each 
communication group (we name it channel) we reached the 
required self-organizational abilities. We are using a strict 
definition of devices, of components and of channels and thus 
are able to define on which level of granularity which 
communication strategies are needed. First applications and 
demonstrators are available. Elting [22] presents the built-up 
of a living room on top of SodaPop that consists of a TV, a 
digital picture frame and a PDA. Here the dynamic 
coordination and cooperation of different output devices is 
demonstrated. Currently the project is defining the semantic of 
the messages and the utility values [23]. Here, as a basis, an 
extended syntax of Universal Plug and Play [15] will be used. 
Also the project web page offers some demonstrators for 
download [6]. Nevertheless the dynamic in data flow needs 
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more communication traffic than in other solutions. Obviously 
the evaluation of the transducers’ non-static utility value 
functions or the broadcasting of information among the 
channel group members needs more communication traffic 
than simple peer-to-peer approaches. Example: Two devices 
(a and b) that host two different components each (a hosts the 
components a1 and a2 and b the components b1 and b2). If 
component b2 is the final addressee of a1’s message there will 
be at least 8 communication messages between the different 
SodaPop-Demons and between the SodaPop-Demons and 
their components (see 4.2 and the details about the 
communication mechanisms). A hard-wired peer-to-peer 
system will need only one communication message. We think 
that this is absolutely tolerable in order to achieve a fully 
distributed implementation of our middleware approach – and 
the dynamic benefits of it.  

In this article we concentrate on the presentation of the 
decision process of one message to one or more receiver 
transducers (see section 4.2) within a SodaPop-Demon group. 
This corresponds to a 1:1 respectively a 1:n mapping of 
messages. That means one message is forwarded to one or 
more receiver transducers. Our next steps are the 
implementation of a n:1 and a n:m mapping (consequently 
that means, that a sequence of n messages is forwarded to the 
same transducer respectively to m transducers). That is often 
the case if sequences of user interactions should result in only 
one user goal. Also some experiments concerning the amount 
of supported devices are still pending. But in our opinion the 
traffic of messages and also the need to execute complex 
conflict resolution mechanisms in every-day scenarios meet 
reasonable real time requirements. 
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