
Joint sOc-EUSAI conference Grenoble, october 2005

Distributed Implementation of a Self-Organizing Appliance Middleware

Michael Hellenschmidt(1)

(1) Fraunhofer Institute for Computer Graphics
Fraunhoferstr. 5, 64283 Darmstadt
Michael.Hellenschmidt@igd.fraunhofer.de

Abstract
A middleware for real ad-hoc cooperation of distributed
device ensembles must support self-organization of its
components. Self-organization means that the independence of
the ensembles’ components is ensured, that the ensemble is
dynamically extensible by new components and that real
distributed implementation is possible. Furthermore the data-
flow of messages within the ensemble may not be statically
determined. This article presents the distributed
implementation of the SodaPop model for distributed device
ensembles of physical heterogeneous devices as well as the
distributed handling of conflict resolution strategies that
guarantee the data-flow even if there are competing
components. The proposed approach relies on the principle of
device representatives. Here physical devices host their
components and disburden them from communication and
service composition strategies.

1. Introduction
Rather popular scenarios for Ambient Intelligence [1, 2]
illustrate the visions of smart conference rooms or smart living
rooms where devices are able to cooperate in an ad-hoc
fashion. Well-established examples are the Easy Living
project from Microsoft [3], the Interactive Workspaces Project
[4] from Stanford University or the Intelligent Classroom [5]
from Northwestern University. But those smart environments
from the various research labs are usually assembled from
devices and components whose functionality is known to the
developers. Furthermore, in systems with distributed devices,
the data flow from device to device is determined for every
use case. Consequently the intelligence of Ambient
Intelligence prototypes and demonstrators is carefully
handcrafted.

This is not possible for dynamic scenarios, where people
come together in a meeting room for example, each of the
participants bringing with own personal devices, or where
people are buying new devices for extending their existing
entertainment device ensembles. A scenario that outlines the
vision of intelligent environments that were built up ad-hoc by
cooperating devices is the example of an ad-hoc meeting
where People meet at a perfectly average room. All of the
participants bring their own notebook computers, at least one
brings a projector and the room has some light controls. So it
would be possible for this spontaneous ensemble to provide
the same assistance as a fixed conference room. This kind of
Ambient Intelligence requires more than setting up a central
control application in advance. It requires the ability of the
devices to autonomously configure themselves into a
coherently acting ensemble that is fully distributed.

Johanson from Stanford University also points out [4] that
“users should only have to plug in a device or bring it into a

physical space for it to become part of the corresponding
software infrastructure. User configuration should be simple
and prompted by the space. …The logical extension of this is
to allow ad hoc interactive workspaces to form wherever a
group of devices are gathered.”

Obviously software infrastructures are needed that are
distributed implemented and that allow a true self-
organization of the device ensembles that are connected in an
ad-hoc fashion. In order to take a step ahead to this vision the
project DynAMITE [6] develops a decentralized middleware
for self-organizing device ensembles on basis of the
middleware model SodaPop [7, 8]. This article specifies the
distributed implementation of this middleware concept.
Therefore the next chapter reviews the requirements for self-
organizing ensembles that come up while looking at the
underlying scenarios. In Section 3 the core concepts of
SodaPop are illustrated (for a detailed specification please
refer to [7, 8]). SodaPop introduces a solution proposal for a
software infrastructure that supports such heterogeneous ad-
hoc device ensembles. Section 4 then outlines the distributed
implementation of our approach and explains conflict
resolution mechanisms among distributed devices with the
principle of device representatives. After some explanations
about the underlying communication infrastructure and the
reflection of the related work this article ends with a
discussion and an outline of our next steps.

2. Requirements
The challenge of self-organization as indicated in the
introduction of this article distinguishes two different aspects:
o Architectonic Integration: this refers to the integration of

a (new) device into the communication patters of an
existing device ensemble. This refers also to the ad-hoc
assembly of a device ensemble from heterogeneous
standalone devices.

o Operational Integration: this describes the aspect of
making new functionalities that are provided by a (new)
device available to the user.

Obviously operational integration means a form of

service discovery transparent to all devices. It can be realized
based on an explicit modeling of the semantics of device
operations as precondition / effect rules that have to be defined
over suitable environment ontology (see [9] for a detailed
reflection on this topic). One has to bear in mind that
operational integration means more than to make a graphical
user interface available for the user like the approaches in Jini
[10] or HAVi [11].

This article concentrates on the aspect of architectonic
integration. While looking at typical scenarios where devices
have to cooperate in an ad-hoc fashion one identifies (see [7,
8] for more details) that each device should also be able to act

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

stand-alone and has to be independent. Additionally
distributed implementation has to be supported to guarantee
that there may not be any kind of central component (because
a central controller is a contradiction itself to the demand of
ad-hoc self-organization) and the devices should be
exchangeable. Furthermore, transparent service arbitration
should be provided. Ambient Intelligence can be identified
(see [7, 8] for more details):

Only if all requirements are met intuitive scenarios like the
”Plug and Play” of new devices into an existing device
ensemble, and the build-up of a device ensemble in an ad-hoc
fashion (with no discussion where a central router should be
started) is possible. The requirement that devices should be
able to work stand-alone corresponds to the user’s experiences
and expectations of the every day usage of conventional
devices.

3. Principles of the SodaPop model
This section should outline the core ideas of the SodaPop
model (for details we refer to [7, 8]). Each device that is able
to interact with users (like TV sets by buttons or remote
controls) and that is able to change the user’s environment (by
rendering a medium for instance) possesses a kind of event
processing. Figure 1 outlines possible processing stages and a
specific event processing pipeline. Usually devices have a user
interface that translates physical user interactions to events.
An Interpreter component then is responsible for determining
the appropriate goals, which are translated into function calls
by a Control Application. The Actuators then are physically
executing this function calls [12].

Figure 1: The internal data-flow of a standard device.

Figure 2: The devices share the interfaces after they
are extended across them.

If some devices are plugged together (see figure 2) the
interface between the individual processing stages can be
extended across multiple devices. That means, after turning
the private interfaces between the processing stages in a
device into public channels, Interpreter components from one

device are able to ”see” events from other devices. Or the
Control Application of one device is able to interpret goals
that are made by other devices.

Obviously if all components are able to “see” the
messages of the other components that are subscribed to a
channel, some conflicts will come up which component(s) are
allowed to process the message. Those conflicts of competing
components have to be solved by conflict resolution
strategies, which are part of the channels message handling
capabilities. The procedure of conflict handling within a
channel is illustrated by figure 3. In a nutshell, SodaPop
differs between two types of components:

Channels read single messages and map them to
(multiple) messages. Therefore conflict resolution strategies
are used that are evaluating the channel subscribers’ utility
value functions, decomposing the messages and delegating
them to the receiver components (see figure 3). How a channel
determines the effective message decomposition and how it
chooses the set of receiving consumers is defined by the
individual channel’s decomposition strategy (that is eventually
based on the channel’s ontology).

Transducers represent the components in figure 1 and
figure 2. Transducers are able to read one or more messages
and are able to map them into appropriate output messages
(e.g. events are mapped into goals). When subscribing to a
channel, a transducer declares: the set of messages it is able to
process and how well it is suited for processing certain
messages. For this reason the transducer makes its utility value
function available to the channel(s) it is connected to.

Figure 3: The basic mechanism of conflict resolution
strategies evaluates the consumer utility values,
decomposes the message and delegates it to the
receiver components.

After a common set of channels as well as appropriate
conflict resolution mechanisms are identified an
architectonic integration of devices and components could
be achieved by means of the SodaPop principles. In [12] a
Generic Topology for Ambient Intelligence is identified. It
consists of four levels of components (Interaction,
Interpretation, Strategy Assistants, and Actors, see also

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

figure 1 and figure 2). Also some possible conflict
resolution strategies within the domain of home
entertainment and the domain of lecture rooms are
described A conflict resolution strategy that decomposes
single messages with amodal information into multiple
messages with modal information (e.g. system output
information that is split up into graphical and voice output
in dependence of the abilities of the connected consumer
components) is explained in detail in [13].

4. Distributed Implementation
In order to make the distributed implementation of the self-
organizing middleware model SodaPop possible, it might
again be helpful to look inside the physical devices that should
be supported. For devices like the one that is illustrated in
figure 1 the implementation seems to be trivial. The User
Interface sends its events directly to the Interpreter. After that
the Interpreter forwards its goals to the following Control
Application. And finally the Control Applications sends the
functions calls to the Actuator.

But what will happen if a vendor wants to sell two
standalone devices in one physical unit? Or in other words:
How can a physical device be internally managed if it consists
of two logical devices?

Now the Interpreter components of both logical devices
(figure 4 illustrates an example of a combined TV set-DVD
device) see all events that come from the different User
Interfaces. Of course it would be reasonable if only one
Interpreter component infers the user’s goals. And of course if
later on only one Control Application schedules the
appropriate functions. In order to provide this the channel has
to apply the necessary conflict resolution strategies.

Figure 4: Two stand-alone devices (left) are combined
to one physical device that then consists of two logical
devices (right).

Obviously the channel is created by its connected transducers
and thus the participating transducers have to carry out the
conflict resolution strategy among them. To provide this
functionality, some principal questions have to be answered:
o Is it possible to apply conflict resolution strategies

cooperatively (among the participating transducers)?
o Or is there a way to choose one transducer that should

apply the conflict resolution strategy alone?

And furthermore, if it is possible to find solutions at least for
one of these questions:
o If the execution of conflict resolution strategies is

possible in a cooperative way - Will it also be possible to
apply the found approach across real distributed physical

devices? That means: Is it possible to find applicable
methods for parallel processing not only among
distributed applications but also among distributed
processors?

o If one transducer can be chosen to apply exclusively the
appropriate conflict resolution strategy, will it also be
able to choose one transducer among distributed physical
devices?

The scenarios (section 1) and the resulting requirements

(section 2) demand the independence of each physical device,
not of each component that runs on these devices. That means
it is reasonable to increase the granularity from logical
components (e.g. a User Interface or an Interpreter
component) to real physical devices (e.g. a TV set that is the
host for its different components). This is obviously according
to the user’s expectations. The user wants to combine physical
devices and not logical components.

Because the physical device is the smallest entity within
a device ensemble it can run one instance of a so-called
SodaPop-Demon. Consequently the SodaPop-Demon hosts all
different transducers of its physical entity (see figure 5).

Figure 5: Each physical device runs one SodaPop-
Demon instance where all logical components, the
transducers, are connected to. The SodaPop-Demon is
also the host for the channels that are defined by the
multiple transducers.

Once a transducer runs:
o It connects to the device’s own SodaPop-Demon by

declaring the descriptions of the channels it wants to
participate

o It indicates for each channel, whether it wants to listen to
channel messages or it wants to write to the channel

o And it declares the set of messages, it is able to process

If now a User Interface component wants to send an
event to the channel it is connected to, it will send a message
to its SodaPop-Demon. The message contains the event itself
together with some information about the receiver channel and
the sender itself. After that the SodaPop-Demon contacts all
transducers that are subscribed as listeners to the
corresponding channel to evaluate their utility value function
according to the initial message. After the SodaPop-Demon
had collected all utility value function results it starts to
execute the channel’s conflict resolution strategy. Finally the
SodaPop-Demon delegates the decomposed message(s) to the
receiver transducer(s). In order to avoid traffic between the

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

transducers and the SodaPop-Demon we differ between static
and non-static utility value functions. In case a utility value
function is static, its values are handed over to the SodaPop-
Demon when the transducer starts and connects.

Thus, the SodaPop-Demon can use its own look-up table
instead of causing message traffic. In general utility value
functions are non-static. They are dependent on the current
state the transducer belongs to when its utility value function
is evaluated. An example is a rendering component for media
that already renders a movie. Of course at this moment it will
raise lower utility values than another rendering component
whose resources are all available. Some consequences of this
approach should be mentioned:
o The channels now turned into virtual entities.

Consequently a channel descriptor defines the name of a
logical group to which transducers correspond to
according to the ontology that is semantically used for
the communication. Also the channel descriptor defines
the effective conflict resolution strategy that has to be
used in case of competing components.

o Messages between transducers and channels are sent via
a SodaPop-Demon. A SodaPop-Demon is the container
for the device’s channels as well as the container for its
different components and their utility value functions.

o All strategies that have to be executed to guarantee the
information flow inside a physical device are applied by
the SodaPop-Demon of the device.

The consequence that a SodaPop-Demon is obviously a

central component for each physical device does not limit the
scenarios and the requirements, because we want to achieve
plug and play of devices and that device ensembles are able to
interoperate in an ad-hoc fashion. The fact that each entity of a
device ensemble (that means each device) runs its own service
isn’t any limitation at all.

4.1. The Principle of Device Representatives

After the introduction of the principles and the functions of the
SodaPop-Demons that correspond to single devices this
section explains how the SodaPop-Demons can be used as
representatives of their device, their channels and their logical
components in heterogeneous device ensembles.

Figure 6 illustrates the principles of the distributed
implementation. The SodaPop-Demons as the representatives
of their devices’ channels and transducers build up groups
where peer-to-peer communication is possible (see 4.3). Each
of the group represents a certain channel. Consequently a
SodaPop-Demon enters a group when an own transducer
connects to the corresponding channel, and a SodaPop-Demon
leaves a channel, when the last own transducer disconnects
from the corresponding channel. If a group that corresponds to
a channel does not exist the responsible SodaPop-Demon will
open up an appropriate group.

Amongst a group the direct addressing from SodaPop-
Demon to SodaPop-Demon is possible (unicast) as well as
multicasts from one SodaPop-Demon to all members of a
group. Therefore only one restriction exists: Each SodaPop-
Demon owns a one-to-one identification number to guarantee
reliable point-to-point communication (this can be done by
using individual manufacturer numbers or rather MAC
numbers).

Figure 6: The SodaPop-Demons of the different
devices build up three different groups that
correspond to the three defined channels. The
different SodaPop-Demons are symbolised by their
device icons.

4.2. Decentralized Conflict Handling

Now the delivering of messages from component to
component reduces to the challenge to find an appropriate
SodaPop-Demon that hosts a qualified transducer. Conflict
resolution mechanisms must be applied by the SodaPop-
Demons that build up the group that corresponds to the
channel where the message is received. And furthermore the
SodaPop-Demons as representatives of their transducers take
part in the competition for messages at the same time. But
decentralized conflict handling without any central or salient
group member needs some conventions:
o Every group member needs the same information:

SodaPop-Demons announce the number of listener- and
writer-transducers they represent in the group as well as
their individual identification number

o Each SodaPop-Demon that hosts a listener transducer
(that means a transducer that wants to consume
messages) must be able to execute the conflict resolution
strategy that corresponds to the represented channel. The
reason for this restriction is intuitively understandable: If
the calculating capacity of a SodaPop-Demon is
sufficient to host a transducer that can interpret messages
and infer user goals for instance, it will have also the
capacity to run substantial strategies. Consequently
simple sensor devices like RFID marker or motion
detectors must not provide too much calculating capacity
because they are only the sources of events and not the
consumers.

The communication mechanisms inside a group of SodaPop-
Demons takes place in the following way:
1. If a transducer sends a message to a channel (e.g. the

User Interface of the remote control in figure 6) the
corresponding SodaPop-Demon broadcasts this message
to the other members of this (channel) group.

2. After receiving the message each SodaPop-Demon will
evaluate the utility value functions of its (listener-)
transducers that are connected to the corresponding
channel and will collect all utility values.

3. Then each SodaPop-Demon broadcasts the following
information to its group participants:

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

o the collection of all utility values of its
transducers

o its own identification number
o a number n between 0 and 1 to declare how

well it is suited to provide the conflict
resolution mechanism (Note: if the SodaPop-
Demon owns listener transducers it has to
provide the necessary ”intelligence” to execute
the corresponding conflict resolution strategy).

o and a time T that indicates the length in time
when the result of the conflict resolution
strategy at the latest will be broadcasted to the
other group members.

4. Each SodaPop-Demon receives the broadcasted
information of the other SodaPop-Demons of its group
and thus all group members own all utility values of all
connected (listener-) transducers.

5. The SodaPop-Demon that offered the highest number n
starts to execute the channel’s conflict resolution
strategy and broadcasts the results to the other group
member. The results are the decomposed message and
the identification number(s) of the receiver transducer(s).

6. Each SodaPop-Demon receives the broadcasted results
and - in case it hosts one or more of the receiver
transducers - forwards the decomposed message(s) to its
transducers.

The process will restart at point 3, if all SodaPop-

Demons offer the number 0 for n; if two or more SodaPop-
Demons offer the same number n - and n is the highest
number that is offered; or if the time T is elapsed without any
results of the SodaPop-Demon that should execute the
conflict resolution strategy (because that could indicate that
the corresponding SodaPop-Demon has left the group or
something other unseen had happened). The task to choose
one SodaPop-Demon to execute the conflict resolution
strategy is well known as the Leader Election Problem [14].

4.3. Underlying Communication Infrastructure

The underlying communication infrastructure for the
described decentralized middleware has to fulfill the
following requirements:
o Ensure peer-to-peer communication without any central

components (except for applications that could run
autonomously on each physical device)

o Ensure the dynamical build-up of groups
o Ensure unicast and broadcast amongst group members.

In DynAMITE we chose to apply the JXTA-technology
[15] as well as the UPnP-(Universal Plug and Play)-
technology [16]. Both can provide the necessary peer-to-peer
communication mechanisms whereas JXTA supplies the
software engineer with comfortable Java (and C) application
programming interfaces. In contrast UPnP has a fast
increasing community and it is expected that UPnP services
will be provided in many devices in the future.

5. Related Work
A middleware for the visions of Ambient Intelligence must
provide complete decentralized communication among its
components. Furthermore to provide extensibility and
exchangeability the middleware must be able to execute

conflict resolution strategies to guarantee reasonable data-flow
even if there are competing components. Different
technologies and approaches face single aspects of the
mentioned requirements. Jini [10], HAVi [11], JXTA [15] and
UPnP [16] make the communication between devices from
different vendors possible. Unfortunately no conflict
resolution mechanisms - apart from graphical user interfaces -
are provided. Some agent technologies are well known like
SRI’s Open Agent Architecture (OAA) [17], the Galaxy
Communicator Architecture [18] or INCA [19]. Galaxy uses a
centralized hub-component that owns routing rules that
determine the data-flow whereas the OAA uses prolog-based
mechanisms that are located in special meta-agents. That is
alike the Jaspis framework [20] that uses evaluation agents for
the evaluation of the quality of possible addressee agents.
INCA uses a central component for registering components
and for delivering messages. The abstract system architecture
of AMIGO [21] recognizes the needs for service discovery
and service composition strategies – as offered by the
channels that are transparent for each developer – but each
component is responsible for the application of such strategies.
Thus the component developer is responsible for both: the
implementation of a component that provides certain
functionalities as well as appropriate service composition
mechanisms. Consequently the reliability and transparency
will decrease. The world of agent communication seems to be
split in two halves. On the one side the peer-to-peer
communication world, where all components broadcast
messages or communicate directly by using fixed addresses.
And on the other side the world with central components
where hand-crafted routing rules are applied to the
communication process. In both worlds the dynamic
extensibility and self-organization of device ensembles seems
to be difficult.

6. Current State and Next Steps
While [7, 8, 12] explain the principles of the SodaPop-model
for the realization of self-organizing device ensembles and
identify certain communication patterns and define some
conflict resolution strategies that make the built-up of device
ensembles possible, this paper specifies the fully distributed
implementation of the SodaPop-model. The presented
distributed implementation abandons any central component
and bears down the disadvantages of the peer-to-peer world as
well as of the world with central (routing) components. With
the approach to define representatives for the multiplicity of
components of each physical device as one peer and the
application of conflict resolution mechanisms among each
communication group (we name it channel) we reached the
required self-organizational abilities. We are using a strict
definition of devices, of components and of channels and thus
are able to define on which level of granularity which
communication strategies are needed. First applications and
demonstrators are available. Elting [22] presents the built-up
of a living room on top of SodaPop that consists of a TV, a
digital picture frame and a PDA. Here the dynamic
coordination and cooperation of different output devices is
demonstrated. Currently the project is defining the semantic of
the messages and the utility values [23]. Here, as a basis, an
extended syntax of Universal Plug and Play [15] will be used.
Also the project web page offers some demonstrators for
download [6]. Nevertheless the dynamic in data flow needs

p. XYZ

Joint sOc-EUSAI conference Grenoble, october 2005

more communication traffic than in other solutions. Obviously
the evaluation of the transducers’ non-static utility value
functions or the broadcasting of information among the
channel group members needs more communication traffic
than simple peer-to-peer approaches. Example: Two devices
(a and b) that host two different components each (a hosts the
components a1 and a2 and b the components b1 and b2). If
component b2 is the final addressee of a1’s message there will
be at least 8 communication messages between the different
SodaPop-Demons and between the SodaPop-Demons and
their components (see 4.2 and the details about the
communication mechanisms). A hard-wired peer-to-peer
system will need only one communication message. We think
that this is absolutely tolerable in order to achieve a fully
distributed implementation of our middleware approach – and
the dynamic benefits of it.

In this article we concentrate on the presentation of the
decision process of one message to one or more receiver
transducers (see section 4.2) within a SodaPop-Demon group.
This corresponds to a 1:1 respectively a 1:n mapping of
messages. That means one message is forwarded to one or
more receiver transducers. Our next steps are the
implementation of a n:1 and a n:m mapping (consequently
that means, that a sequence of n messages is forwarded to the
same transducer respectively to m transducers). That is often
the case if sequences of user interactions should result in only
one user goal. Also some experiments concerning the amount
of supported devices are still pending. But in our opinion the
traffic of messages and also the need to execute complex
conflict resolution mechanisms in every-day scenarios meet
reasonable real time requirements.

Acknowledgements
The work presented in this paper was funded by the German
ministry for education and research (BMB+F) under the grant
01 IS C27 A of the project DynAMITE.

References
[1] Aarts, E. (2004) Ambient Intelligence: A Multimedia
Perspective, in: IEEE Multimedia, p. 12-19.
[2] Ducatel K., Bogdanowicz M., Scapolo F., Leijten, J., and
Burgelman J.-C. (2001) Scenarios for Ambient Intelligence
2010, ISTAG Report, European Commission, Institute for
Prospective Technological Studies, Seville, available from:
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf
[3] Brumitt, B., Meyers, B., Krumm, J., Kern, A., and Shafer
S. (2000) Easy Living: Technologies for Intelligent
Environments, in: Handheld and Ubiquitous Computing (Sep.
2000)
[4] Johanson, B., Fox, A., and Winograd, T. (2002) The
Interactive Workspaces Project: Experiences with Ubiquitous
Computing Rooms, in: IEEE Pervasive Computing Magazine
1(2), April-June 2002
[5] Flachsbart, J., Franklin, D., and Hammond, K. (2000)
Improving Human-Computer Interaction in a Classroom
Environment using Computer Vision, in: Proceedings of the
Conference on Intelligent User Interfaces.
[6] DynAMITE - Dynamic Adaptive Multimodal IT
Ensembles, available from: http://www.dynamite-project.org
[7] Heider, T., and Kirste, T. (2002), Architecture
consideration for interoperable multi-modal assistant systems,

in: Proc. 9th Intern. Workshop on Design, Specification, and
Verification of Interactive Systems (DSV-IS 2002), Rostock,
Germany
[8] Hellenschmidt, M., and Kirste T. (2004) SodaPop: A
Software Infrastructure Supporting Self-Organization in
Intelligent Environments, in: Proc. of the 2nd IEEE
Conference on Industrial Informatics, INDIN 04, Berlin,
Germany, 24 - 26. June, 2004.
[9] Heider, T., and Kirste, T. (2002) Supporting goal-based
interaction with dynamic intelligent environments, in: Proc.
15th European Conference on Artificial Intelligence (ECAI
2002), Lyon, France
[10] Jini, Sun Microsystems, available from:
http://wwws.sun.com/software/jini/, 2003
[11] HAVi, Inc., The HAVi Specification - Specification of
the Home Audio / Video Interoperability (HAVi) Architecture
- Version 1.1, http://www.havi.org, 2001
[12] Hellenschmidt, M., and Kirste, T. (2004) A Generic
Topology for Ambient Intelligence, in: Proc. of the Second
European Symposium on Ambient Intelligence (EUSAI 2004),
Eindhoven, the Nederlands, November 8 - 10, 2004
[13] Elting, Ch., and Hellenschmidt, M. (2004) Strategies for
Self-Organization and Multimodal Output Coordination in
Distributed Device Environments, in: Baus, Joerg (Ed.) et al.:
Proc. of the Workshop on Artificial Intelligence in Mobile
Systems 2004 (AIMS), Saarbruecken, p. 20-27
[14] Feige U. (1999) Noncryptographic selection protocols,
in: Proceedings of 40th FOCS, p. 142-152, 1999
[15] The JXTA Project, Sun Microsystems, available from:
http://www.jxta.org, 2003.
[16] The Universal Plug and Play Forum, Contributing
Members of the UPnP(TM) Forum, available from:
http://www.upnp.org, Mar 2005.
[17] Martin, D.L., Cheyer, A.L., and Moran, D.B. (1999) The
Open Agent Architecture: A Framework for Building
Distributed Software Systems, in: Applied Artificial
Intelligence, Vol. 13, No. 1-2, pp. 91-128, Jan-Mar 1999.
[18] Seneff, S., Lau, R., and Polifroni, J. (1999) Organization,
Communication, and Control in the Galaxy-II Conversational
System, in: Proc. of Eurospeech’99, pp. 1271–1274
[19] Truong, K.N., and Abowd G.D. (2004) INCA: A Software
Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture and Access Applications, in: Proc. of the
2nd Intern. Conf. on Pervasive Computing (Pervasive 2004),
Linz/Vienna, Austria, 2004, pp.140-157
[20] Turunen, M., Hakulinen, J., Räihä, K.-J., Salonen E.-P.,
Kainulainen, A., and Prusi, P. (2005) An architecture and
applications for speech-based accessibility systems, in: IBM
Systems Journal, Vol. 44, No. 3, 2005
[21] AMIGO: Specification of the abstract system architecture
(2005) Deliverable D2.1, available from: http://www.amigo-
project.org, April 2005
[22] Elting, Ch. (2005) Orchestrating Output Devices –
Planning Multimedia Presentations for Home Entertainment
with Ambient Intelligence, in: Proc. of the Conference for
Smart Objects and Ambient Intelligence (sOc-EUSAI 2005),
Grenoble, France, October 12-14, 2005
[23] Kutter, O., Neumann. J., and Schmitz, T. (2005)
Extending Universal Plug and Play to support self-organizing
device ensemble, presented on the: Workshop on Software
Architectures for Self-Organization, in conjunction with
Pervasive 2005, Munich, Germany, May 11, 2005

p. XYZ

	Introduction
	Requirements
	Principles of the SodaPop model
	Distributed Implementation
	The Principle of Device Representatives
	Decentralized Conflict Handling
	Underlying Communication Infrastructure

	Related Work
	Current State and Next Steps
	Acknowledgements
	References

